
NASA/CR- 1998-208435

ICASE Report No. 98-24

Globalized Newton-Krylov-Schwarz Algorithms and

Software for Parallel Implicit CFD

W.D. Gropp

Argonne National Laboratory, Argonne, Illinois

D.E. Keyes

OM Dominion University, Norfolk, Virginia and

ICASE, Hampton, Virginia

L. C. Mclnnes

Argonne National Laboratory, Argonne, Illinois

M.D. Tidriri

Iowa State University, Ames, Iowa

Institute for Computer Applications in Science and Engineering

NASA Langley Research Center

Hampton, VA

Operated by Universities Space Research Association

National Aeronautics and

Space Administration

Langley Research Center
Hampton, Virginia 23681-2199

August 1998

Prepared for Langley Research Center under
Contracts NAS 1-19480 and NAS 1-97046

Available from the following:

NASA Center for AeroSpace Information (CASI)

7121 Standard Drive

Hanover, MD 21076-1320

(301) 621-0390

National Technical Information Service (NTIS)

5285 Port Royal Road

Springfield, VA 22161-2171

(703) 487-4650

GLOBALIZED NEWTON-KRYLOV-SCHWARZ ALGORITHMS AND SOFTWARE

FOR PARALLEL IMPLICIT CFD *

W. D. GROPP t, D. E. KEYES t, L. C. MCINNES§, AND M. D. TIDRIRI ¶

Abstract. Implicit solution methods are important in applications modeled by PDEs with dis-

parate temporal and spatial scales. Because such applications requirc high resolution with reasonable

turnaround, "routine" parallelization is essential. The pseudo-transient matrix-free Newton-Krylov-

Schwarz (_NKS) algorithmic framework is presented as an answer. We show that, for the classical

problem of three-dimensional transonic Euler flow about an M6 wing, _NKS can simultaneously de-

liver

• globalized, asymptotically rapid convergence through adaptive pseudo-transient continuation

and Newton's method;

• reasonable parallelizability for an implicit method through deferred synchronization and favor-

able communication-to-computation scaling in the Krylov linear solver; and

• high per-processor performance through attention to distributed memory and cache locality,

especially through the Schwarz preconditioner.

Two discouraging features of _NKS methods are their sensitivity to the coding of the underlying PDE

discretization and the large number of parameters that must be selected to govern convergence. We

therefore distill several recommendations from our experience and from our reading of the literature

on various algorithmic components of _I/NKS, and we describe a freely available, MPI-based portable

parallel software implementation of the solver employed here.

Key words. Newton-Krylov-Schwarz algorithms, parallel CFD, implicit methods

Subject classification. Computer Science

1. Introduction. Disparate temporal and spatial scales arise in CFD applications such as tran-

sonic or high Reynolds number flows in which the flow velocity goes to zero at a stagnation point or

no-slip surface, flows containing shocks or combustion fronts, and multidisciplinary phenomena such as

aeroelasticity. Local equilibration of wavespeeds (as in the "preconditioning" of [75]) and temporal sub-

cycling (as in the "three-field" method of [26]) are two strategies that permit explicit integration of the

flowfields of some such problems; nevertheless, implicit solution methods are playing increasingly impor-

tant roles in CFD. Whereas explicit methods based on localized stencil updates with nearest-neighbor

communication lend themselves straightforwardly to scalable parallelization, implicit methods based on

*This work was supported in part by the National Aeronautics and Space Administration under NASA Contract Nos.

NAS1-97046 and NAS1-19480, while the authors were in residence at the Institute for Computer Applications in Science

and Engineering, MS 403, NASA Langley Research Center, Hampton, VA 23681-2199.

t Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439-4844 USA

_. mcs. anl. gov/'gropp

Computer Science Department, Old Dominion University, Norfolk, VA 23529-0162 USA & ICASE, NASA Langley

Res. Ctr., Hampton, VA 23681-2199 USA m_. cs. odu.edu/-keyes

§ Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL 60439-4844 USA

_. mcs. anl. gov/'mcinnes

Mathematics Department, Iowa State University, Ames, IA 50011-2064 USA

the global recurrences of forward and backward triangular solves (exact or approximate) and/or the

global inner products of optimal descent or Krylov iterative methods appear to be intrinsically less scal-

able. At the same time, the demand for high resolution with reasonable turnaround requires scalable

parallelism and in particular for cost effectiveness -- latency-tolerant parallelism for applicability to

networked clusters. For the common situation in which the discretization is applied in a uniform way

over a grid that is adapted only infrequently (and may therefore be cost-effectively load balanced to high

precision), thc pseudo-transient matrix-free Newton-Krylov-Schwarz (_NKS) algorithmic framework is

presented as one answer to the conflicting demands of implicitness and parallelism.

In the final section, we discuss the role of q2NKS methods in more dynamic simulation environments.

For problems in which convergence to a low-residual steady state is required, as is often the case when

CFD analyses are finite-differenced for sensitivities in computational design and optimization, a Newton

method is asymptotically cost effective. Alternatively, the ability to solve implicit linear systems with

the Jacobian, a by-product of Newton's method, can be exploited in deriving sensitivities. Motivated by

the requirements of NASA, DOE, industry, and others to employ CFD in the design process, we regard

the ability to apply the inverse action of the Jacobian as ultimately nccessary to the optimization process,

and therefore to be exploited during the analysis process as well. While Newton methods sometimes

converge from simply specified initial iterates even in challenging CFD problems (e.g., [13]), they must

usually be "robustified" through a continuation scheme, such as pseudo-transience (e.g., [40]). Newton

methods for PDEs require the solution of large, sparse nonsymmetric linear systems, to which we apply

Krylov methods, such as GMRES [65]. To control the number of Krylov iterations, while obtaining

concurrency proportional to the number of processors, we precondition them with domain-decomposed

additive Schwarz methods [69].

Effective use of _NKS in CFD codes requires attention to several details. We describe, in particular,

the sensitivity of the methodology to the implicitness of the boundary conditions, the presence of limiters

in the discretization, the scaling of the differencing parameter in the matrix-free application of the

Jacobian, the convergence of the inner Krylov iterations, and the aggressiveness of thc pseudo-transient

continuation. Some of these considerations are generic to any system modeled by PDEs.

Various aspects of the a2NKS framework have been pioneered by others over the past two decades.

While this paper (and its unstructured-grid companions [38, 44]) contributes some new, architecturally

oriented advances, our principal goal is to integrate algorithmic progress and to reconcile trade-offs be-

tween interrelated algorithmic components so as to promote robustness, rapid convergence, and parallel

scalability in the context of an important family of applications.

The use of pseudo-transience as a means of approaching steady state (typically in the form of time-

parabolization of an elliptic boundary value problem) has been independently reinvented in contexts far

too numerous to mention. We have been particularly influenced by two forms: thc "successive evolution-

relaxation" strategy of Mulder and Van Leer [56] and the temporal truncation error strategy described

in [45], both of which smoothly adapt the aggressiveness of the timestepping to the progress of the

iterations toward steady state, ultimately leading to Newton-like asymptotic superlinear or quadratic

convergence rates. Some sufficient conditions for globalized convergence for such strategies are given in

[40].

An exact Newton method is rarely optimal in terms of memory and CPU resources for large-

scale problems, such as finely resolved multidimensional PDE simulations. The pioneering work of

iI 1 I

Dembo, Eisenstat, & Steihaug [20] showed that properly tuned inexact Newton methods can save

enormous amounts of work (through approximating the Newton corrections, which can in turn permit

approximation of the Jacobian matrix) over a sequence of Newton iterations, while still converging

quadratically. This theory was revisited to provide inexpensive, constructive formulae for the sequence

of inexact tolerances by Eisenstat & Walker [24]. Smooke [70] and Schreiber & Keller [67] devised

Newton-chord methods with models for cost-effective frequency of Jacobian reevaluation. The use

of various approximate Newton methods in CFD emerged independently in various regimes. Vanka

[77] implemented Newton solvers in primitive-variable Navier-Stokes problems. Venkatakrishnan [78],

Orkwis [61], and Whitfield & Taylor [84] established Newton-like methods in transonic problems. These

works employed various direct or stationary iterative methods for the linear Newton correction equation

and were based on explicit matrix representations of the Jacobian operator.

The advent of Krylov iterative methods (see, e.g., [28] for a survey) inside of inexact Newton

iterations in a matrix-free context can be traced to the ODE-oriented papers of Gear & Saad [29], Chan

& Jackson [17], and Brown & Hindmarsh [8] and the PDE-oriented work of Brown & Saad [9]. (The term

"Newton-Krylov" seems first to have been applied to such problems in]9].) The GMRES [65] method

was firmly established in CFD following the work of Wigton, Yu, & Young [86] and Johann, Hughes,

& Shakib [37, 68]. Venkatakrishnan & Mavriplis showed in [81] that NK methods (preconditioned

with a global incomplete factorization) were competitive with multigrid methods for large-scale CFD

problems; a similar comparison for the matrix-free form of such methods was given by Keyes in [42].

Various practical aspects of NK methods in CFD were explored in [1, 6, 36, 51, 52, 59, 63, 73].

The application of domain decomposition-based preconditioners to nonlinearly implicit CFD algo-

rithms has been our focus for the past decade]43]. Cai's doctoral dissertation [10] extended overlapping

Schwarz theory to the nonselfadjoint operators of convection-diffusion problems and first articulated

their optimality -- even without the benefit of a coarse grid component -- in the parabolic case. The

term "Newton-Krylov-Schwarz" was coined in [14]. NKS methods have been taken up by Cai and

collaborators [11, 12, 13, 15], Knoll and collaborators]46, 47, 48, 49, 52], and Perniee and collaborators

[62], among many others.

One of the main contemporary motivations for domain decomposition methods is divide-and-

conquer concurrency. Scalability studies based on dimensionless ratios of communication and com-

putation parameters for message-passing aspects of domain-deeomposed iterative methods appeared in

[30, 31]. Recently, the cache-based motivation for domain decomposition has become very apparent

[82]. Actual parallel implementations of NKS methods, however, are relatively few. We mention the

shared-memory implementation of [53] and the distributed-memory implementations of [13, 15, 38, 44].

We believe that the most important capabilities of q_NKS algorithms have been brought together

in freely available, widely portable, and widely distributed parallel software for the first time in the

Portable, Extensible Toolkit for Scientific Computation (PETSc) package [5], through which the illus-

trative results of this paper have been obtained. We justify the broad scope of the presentation by the

need to appreciate the framework as a whole. If any aspect of the _NKS algorithmic framework is

missing or "mistuned" (in various senses to be illustrated in Section 6), significant performance will be

"left on the table". On the other hand, this is by no means a comprehensive paper. It considers only one

example and omits important strategies such as multilevel iteration and solution-adaptive partitioning.

It should be regarded as one installment of a "metapaper" that PETSc has been created to help us

continueto write.
Webeginbydetailingthepseudo-transientcontinuationstrategyandtheNKSalgorithmicframe-

workin Section2. Wereviewthe compressibleEulerequationsin Section3, followedby additional
algorithmicdetails(specifically,CFL advancementsandmatrix-freeissues)in Section4. Section5
discussestheparallelimplementationofNKSina legacyCFDcode(theJULIANNEcodeofWhitfield
andTaylor[84])usingPETScto replacethesolverwhilepreservingthediscretization,andSection6
presentsnumericalexperiments.Wesummarizeandextrapolatein Section7.

2. Algorithmic Framework._NKSmethodsaxedesignedto solvesteady-statesystemsof non-
linearboundaryvalueproblemsdiscretizedas

(2.1) f(u) : O,

where u is a vector of unknowns representing the state of the system (typically nodal values of multiple

fields defined at the same set of grid locations, though other interpretations in terms of expansion

coefficients for the fields, or staggered grid layouts of nodal values, are included), with solution u*,

and where f(u) is a vector-valued function of residuals of the governing equations. We are primarily

interested in three-dimensional settings in which the number of gridpoints is in the millions and the

number of components of u is correspondingly larger by a factor of (typically) five (more with turbulence

or reaction models, fewer for various special incompressible or irrotational models). For problems of

this size, typical of full airplane external aerodynamics or of complex ASCI-scale systems, the ordering

of unknowns can be crucial to performance on a hierarchical memory computer system, and we remark

on this issue later. In this paper, we consider a problem on a mapped, structured grid. For related

implementations on unstructured grids, see [38].

2.1. Pseudo-Transient Continuation. Pseudo-transient continuation solves the steady-state

problem (2.1), for which a solution is presumed to exist, through a series of problems

(2.2) ge(u) -- T_ + f(u) O, £ = 1,2,...,

which are derived from a method-of-lines model

bu

0-7= -f(u),

each of which is solved (approximately) for u _. The physical transient is followed when the timcstep T_

is sufficiently small, leading the iterations through a physically feasible sequence of states. Furthermore,

the Jacobians associated with g_(u) = 0 are well conditioned when Te is small, r e is advanced from

r ° << 1 to r e --_ oc as £ -* oo, so that u t approaches the root of f(u) = 0. We emphasize that pseudo-

transient continuation does not require reduction in IIf(ue)lJ at each step, as do typical linesearch or

trust region globalization strategies [21]; it can climb hills.

Strict Newton iteration applied to (2.2) yields

(2.3) u e'k : _t _'-1 -- (I "_ Tef'(ug'k))--l(u g'k -_-Tef(u e'k) -- Ug--l), k _- 0, 1,....

If we take u e'° ----u _- z (the simplest initial iterate), then the first correction step is

(2.4) u ,l = u -i _

In some problems, it may bc required to iterate the Newton corrector (2.3) more than once [36] or until

it converges (limk-.oo u t'k -- ut), thus leading in the limit to following the transient implicitly. In this

paper, however, wc prefer to advance in pseudo-time after just one Newton step (2.4).

A timestep scheme is required to complete the algorithm. One choice is successive evolution-

relaxation (SER) [56], which lets the timestep grow in inverse proportion to residual norm progress:

(2.5) T g = V g-l"]lf(u_-2)l]
11f(u_-_)ll

Alternatively, a temporal truncation error strategy bounds the maximum temporal truncation error in

each individual component, based on a local estimate for the leading term of the the error. (The idea

is not to control the error, per se, but to control the stepsize through its relationship to the error.)

Another approach sets target maximum magnitudes for change in each component of the state vector

and adjusts the timestep so as to bring the last measured change to the target. All such devices are

"clipped" into a range about the current timestep in practice. Typically, the timestep is not allowed to

more than double in a favorably converging situation, or to be reduced by more than a factor of ten in

an unfavorable one, unless feasibility is at stake, in which case the timestep may be drastically cut [40].

The globalization theory of [40] employs a three-phase approach, whose phases in practice may or

may not be cleanly demarcated in residual norm convergence plots. Initially, t lu ° - u*l[>> 1 and r ° << 1.

During an "induction phase" the solution is marched in a method-of-lines sense with relatively small

timestep until Ilu- u*ll/[lu ° -u*[l <4 1. Success of this phase is governed by stability and accuracy

of the integration scheme (we simply use the backward Euler method) and by the choice of initial

iterate. For problems in which a complex feature, such as a shock or a flamefront, must arise from a

structure-free initial condition, the induction phase is typically by far the longest. (We arc reminded

of an observation attributed to Samarskii: "The slower you start, the sooner you finish.") In a grid-

sequenced problem, in which the initial iterate on a given fine grid is interpolated from a converged

solution on a coarser grid, and in which solution features are correctly located (if not fully resolved), the

induction phase on the finest grid can be relatively brief [71]. During a second "transition phase" the

timestep is built up in the neighborhood of the solution. The critical assumption is existence of a fl such

that H(I + Tf'(u)) -1 I[_ (1 + fiT) -1 for all T > 0 if HU- U*[[< e. Finally comes a "polishing phase,"

during which the the timesteps approach infinity (or some user-imposed upper bound) and iterates

approach the root with asymptotic Newton-like convergence. This phase is treated by a conventional

local analysis, as in [39].

The main result of the theory is that there is either convergence from u ° to u* or an easily detectable

contraction of r I toward 0, allowing recovery actions. The main hypotheses of the theory, including

smooth differentiability of f(u), are difficult to verify in practice. They are also rarely respected

in practice, since instantaneous analytical approximations of if(u) are too expensive in memory and

execution time.

2.2. Inexact Newton Methods. We use the term "inexact Newton method" to denote any

nonlinear iterative method for solving f(u) = 0 through a sequence u t = u t-1 + At6u t, where 6u t

approximately satisfies the true Newton correction equation

(2.6) f'(ut-1)hu _ = -f(ut-1),

in thesensethat the linearresidualnormIIf'(ue-1)due + f(u t-l)[[is sufficiently small. Typically the

right-hand side of the linear Newton correction equation, which is the nonlinear residual f(ue-1), is

evaluated to full precision, so the inexactness arises from an incomplete convergence employing the

true Jacobian, freshly evaluated at u e-l, or from the employment of an inexact Jacobian for f_(u e- 1).

Typical choices would bc

• a matrix whose action on a vector is constructed from finite differences of f, rather than analytic

formulae;

• a matrix that is lagged (or some of whose assembly elements are lagged) from the evaluation

at some previous state urn, m < l - 1;

• a matrix derived from a discretization related to, but not the same as, that used for f itself; or

• a matrix that has been simplified by omission of elements that are inconvenient with a particular

storage scheme or approximate parallelizable inversion process.

In this paper, we consider the first possibility. The latter three possibilities for economizing on the

Jacobian are also employed in this paper, but not in the matrix used in the Newton correction equation

-- only in the construction of its preconditioner. In other contexts, the second possibility is referred to

as a "modified Newton method" [70]. The latter two we regard as so inexact that they are demoted to

"defect correction methods" [42].

The first choice above is divided into two categories of finite-difference approximations:

• one in which the approximate Jacobian is explicitly constructed, element by clement, from

a sequence of finite differences (usually chosen with the aid of graph coloring on the discrete

stencil), each of which supplies one or more columns of f'(u), for example, [f,(ue)]ij = o_.fi_o_,j_(ue_j..m

-_;[fi(u e + hej) - fi(u*)], where h is a differcncing parameter and ej is the jth unit vector; and

• one in which thc Jacobian-vector action is approximated in one or two function evaluations

(besides that of f(u e- 1), itself) in a discrete analog of Frdchet derivatives of smooth functions,

for example, f'(ue)v __._[(1f u e + hv) - f(ut)].

We compare both methods in this paper. We note that the first method permits the differencing

parameter to be chosen with respect to individual state vector componcnts, in order to maximize the

signal-to-noise ratio in the numerical differentiation, whereas the second method requires a differencing

parameter that is the same for all state vector perturbations. In this sense, the first method can be

made more robust than the second in finite precision, but it does require the explicit construction of

the Jacobian. It is proved in [21] that the first method permits the discrete Newton method to inherit

the quadratic asymptotic convergence of the true Newton method.

Inexact Newton methods require a strategy for terminating the inner linear iterations, in effect

choosing Oe, in

(2.7) [If(u e-l) + ft(ue-1)(u - ue-1)lI < rR[lf(ue-1)l I .

One of the Eisenstat-Walker [24] criteria is

I IIf(ue-1)l} - Ill(ue-1) + f'(ue-1)(u - _e-I)ll [
(2.8) tie = llf(ul_l)l l

Ajmani et al. [1] adopt: r/t = _og--_• Venkatakrishnan & Mavriplis [81] adaptively choose r/e so that

work and storage per Newton step are bounded at some fixed expenditure. When the latter strategy

'I |1

is combined with the fixed single Newton corrcction per pseudo-timestep, a constant linear work per

timestep results.

The first strategy is theoretically elegant and appears to assure the minimum linear work consis-

tent with a guaranteed asymptotically superlinear convergence. However, the resulting stringent linear

convergence requirements may be difficult to meet in large, ill-conditioned problems. Moreover, super-

linear nonlinear convergence may be too expensive a goal in practice, wherc the objective is to minimize

execution time rather than number of inexact Newton steps.

The last strategy seems common in compressible external aerodynamics codes, particularly with

problems whose memory requirements approach the maximum availablc. Often in such large ill-

conditioned problems, relatively little progress is made in a given inner linear iteration, with the con-

sequence that the Newton correction is effectively underdamped and the steady-state residual norm

improves only slightly. This provides direct feedback limiting the increase of the timestep (and possibly

decreasing it), which maintains or improves the linear conditioning of the next step, rather than letting

the conditioning deteriorate with increasing pseudo-timestep. (See [25] for a polyalgorithmic method

that exploits the effect of the pseudo-timestep on the linear conditioning.)

We have experimented a good deal with thc first and last strategies, and we find that a hybrid

approach is the most cost-effective in large transonic flow problems. Such an approach involves an

initially loose convergence criterion (to avoid "oversolving," in the sense of [24]) evolving to a tighter

criterion, but subject to a linear-work-per-step bound (in the sense of [81]).

For problems sufficiently small and well conditioned (linearly) to apply (2.8), overall cost is not as

important.

2.3. Newton-Krylov Methods. A Newton-Krylov method uses a Krylov method, such as CM-

RES [65], to solve (2.6) for _u _. From a computational point of view, one of the most important

characteristics of a Krylov method for the linear system Ax = b is that information about the matrix A

needs to be accessed only in the form of matrix-vector products in a relatively small number of carefully

chosen directions. When the matrix A represents the :lacobian of a discretized system of PDEs, each of

these matrix-vector products is similar in computational and communication cost to a stencil update

phase (or "global flux balance") of an explicit method applied to the same set of discrete conservation

equations or to a single finest-grid "work unit" in a multigrid method. NK methods are suited for

nonlinear problems in which it is unreasonable to compute or store a true full Jacobian, where the

action of A can be approximated by discrete directional derivatives.

Some Krylov methods for nonsymmetric problems require matrix-vector products with A T as well as

A [27]. It does not seem possible to approximate the action of A T from finite differences of the original

function evaluation. Other nonsymmetric Krylov solvers, such as CCS [72], BiCGSTAB [76], and

TFQMR [27], could be substituted for GMRES and converge about as well in terms of the total number

of matrix-vector products. In our experience with model problems (see, e.g., [41]), most such methods

employ two matrix-vector products per step and converge in about half as many steps. It should be

borne in mind, however, that their behaviors can differ wildly, and in nonuniformly rankable ways, for

specially chosen problems [57]. Our experience with such solvers in the matrix-free _NKS context is less

favorable than that with CMRES. They have the advantage of requiring less memory, and the potential

of requiring fewer global reductions (for inner products), but the disadvantage of nonmonotonic and, in

some cases, wildly oscillating residual norm histories, leading to decreased numerical stability. Another

advantageof GMRES is its use of matrix-vector products with unit-norm vectors v, which tend to

be well suited for finite-difference approximations involving scale-sensitive perturbations, for example,

f(u _-1 + hv) [52].

2.4. Newton-Krylov-Schwarz Methods. A Newton-Krylov-Schwarz method combines a Newton-

Krylov (NK) method, such as nonlinear GMRES [86], with a Krylov-Schwarz (KS) method, such as

restricted additive Schwarz [16]. If the Jacobian A is ill-conditioned, the Krylov method will require

an unacceptably large number of iterations. The system can be transformed into the equivalent form

B-lAx = B-lb through the action of a preconditioner, B, whose inverse action approximates that of

A, but at smaller cost. It is in the choice of preconditioning that the battle for low computational cost

and scalable parallelism is usually won or lost. In KS methods, the preconditioning is introduced on

a subdomain-by-subdomain basis through a conveniently computable approximation to a local Jaco-

bian. Such Schwarz-type preconditioning provides good data locality for parallel implementations over

a range of parallel granularities, allowing significant architectural adaptability.

Domain-based parallelism is recognized as the form of data parallelism that most effectively ex-

ploits contemporary microprocessors with multilevel memory hierarchy [18, 82]. Schwarz-type domain

decomposition methods have been extensively developed for finite difference/element/volume PDE dis-

cretizations over the past decade, as reported in the annual proceedings of the international conferences

on domain decomposition methods, of which the two most recent volumes (containing about 150 con-

tributions) are [7] and [50].

We use the restricted additive Schwarz Method (RASM), which eliminates interprocess communica-

tion during the interpolation phase of the additive Schwarz technique [16]. In particular, if we decompose

a problem into a set of possibly overlapping subdomains 12i, the conventional additive Schwarz method

can be expressed as

(2.9) M A_ M = _ I_ T A_ I R_,
i

where the three-phase solution process consists of first collecting data from neighboring subdomains via

global-to-local restriction operators P_, then performing a local linear solve on each subdomain A, 1,

and finally sending partial solutions to neighboring subdomains via the local-to-global prolongation

operators Ri T. The RASM preconditioner is expressed in operator notation as

(2.10) -1 =MRASM _ RI.TA-1Ri$ $ •

i

It performs a complete restriction operation but does not use any communication during the interpola-

tion phase, R_ T. This provides the obvious benefit of a 50% reduction in nearest-neighbor communica-

tion overhead. In addition, experimentally, it preconditions better than the original additive Schwarz

method over a broad class of problems [16], for reasons that are beginning to be understood in terms

of the H 1 "energy" of the global interpolant.

As originally introduced [23], additive Schwarz preconditioning includes a coarse grid term in the

sum (2.9). Indeed, the coarse grid is essential for optimal conditioning in the scalar elliptic case.

Success with coarse grids in Schwarz methods in the Euler and Navier-Stokes contexts has been modest,

reflecting the comparable situation for multigrid methods for difficult flow problems. In this paper, we

do not further consider coarse grids. We mention the Newton-based work of Vcnkatakrishnan [79] on

Eulerproblemsandthedefectcorrection-basedworkof Jenssen & Weinerfelt on Eulcr [34] and Navier-

Stokes [35]. In the former context, the convergence rate enhancement of the coarse grid is nearly wiped

out by the cost per iteration of its parallel implementation. In the latter cases, coarse grid corrections

encouragingly pay for themselves.

2.5. Contrast with Defect Correction. A typical Euler (or Navier-Stokes) code employs a

defect correction solver. To solve the sequence of nonlinear problems created upon implicitly temporally

differencing (2.2), a left-hand-side matrix (related to a Jacobian) is created in whose construction

computational short-cuts are employed and which may be stabilized by a degree of first-order upwinding

that would not be acceptable in the discretization of the residual itself. We denote this generic distinction

in the update equation (2.11) by subscripting the residual "high" and the left-hand-side matrix "low":

(2.11) Jto_,Su = -- f high .

Often, Jlow is based on a low-accuracy residual for f:

D Ofzo_
(2.12) J_°w r Ou '

where D is a scaling matrix (which could be the identity or could be a diagonal matrix of cell volumes,

for instance). The inconsistency of the left- and right-hand sides prevents the use of large timcsteps, T.

Using Jlo_ (or, more typically, some inexpensive approximation thereto, denoted Jgow) as a precondi-

tioner, we replace (2.11) with

(2.13) (Jl-o_)-l JhighSU = --(Jl-o,_)-l fhigh,

in which the action of Jhiah on a vector is obtained through directional differencing, namely,

1 D

(2.14) Jhigh(ut)v _ -_ [fhigh(Ul + hv) - high(at)] + --v,r

where h is a small parameter. Note that the operators on both sides of (2.13) are based on consistent

high-order discretizations; hence, timesteps can be advanced to arbitrarily large values, recovering a

true Newton method in the limit.

From the viewpoint of linear convergence rate, it would seem ideal to use a preconditioner based on

Jhlgh in (2.13), but such a preconditioner can be much more expensive and memory-consumptive than

one based on Jlow. In (2.13), we have merely shifted the inconsistency from the nonlinear to the linear

iteration. From the point of overall execution time, it is not obvious which is better: many inexpensive

nonlinear iterations in which the inner linear problem (2.11) is preconditioned by Jlo_,, or fewer more

expensive nonlinear iterations containing the inner problem (2.13). The answer is strongly affected by

the sequence of timesteps employed in (2.12). When the parameter v is small, Jlow and Jhigh are both

dominated by the same diagonal matrix, and the extra costs of working with Jhigh in the preconditioner

may be unjustified.

The potential for (2.13) to outperform (2.11) is demonstrated in the CFD context in [15, 42]. In

[32], the dcterioration with advancing CFL number of a solver based on approximate factorization of

the operator in (2.12) is contrasted with an advancing CFL approach based on (2.13). Dimensionally

split approximate factorization schemes also require low CFL number. In spite of this disadvantage

in their rate of convergence to steady states, dimensionally split schemes continue to enjoy memory

advantagesovermoreimplicitschemes,thefullymatrix-freeworkofQin,Ludlow,& Shaw[63]beinga
recentexample.

TherangeofoptionsforJ_o_, and ,/high are explored in the context of CFD in [36]. The combination

of choice for obtaining low-residual steady-state solutions (designated "ALLMUS" therein) corresponds

to the use of Jhigh on the left-hand side, as well as the right, as in (2.13).

It should be borne in mind that the margin of superiority of (2.13) over less nonlinearly implicit

schemes is very sensitive to the frequency of reevaluation (and refactorization) of Jlow and to the

intimate coupling of the optimal reevaluation frequency with CFL advancement strategy and Krylov

subspace size. Evaluation and refactorization of Jlow are still expensive, comparable in arithmctic cost

to the evaluation of fhigh and typically more expensive in terms of communication. The frequency of

Jlow evaluation is a relatively neglected topic in the literature, since it is so problem dependent. An

empirical sequential cost model is outlined in [46].

Othcr tuning parameters with a strong influence on the performance of (2.13) are those that define

the difference between Jlo_ and Jlo_. These include parameters defining incomplete factorization fill

(whether position-based or threshold-based); relaxation or multilevel method parameters if the precon-

ditioning is implemented by a number of sweeps of an iterative method; and, in the parallel context,

the number of subdomains, subdomain overlap, the use of a coarse grid in the Schwarz method, and

so forth. These algorithmic tuning choices are, in principle, amenable to systematic optimization with

direct search methods [22] and should bc explored before undertaking a series of "production" runs.

3. Compressible Euler Equations. To illustrate the _NKS algorithm in the parallel context, we

solve the three-dimensional compressible Eulcr equations on mapped, structured grids using a second-

order finite volume discretization. The basis for our implementation is the sequential Fortran77 code

(JULIANNE) by Whitfield & Taylor [84]. Thus, we demonstrate the use of parallel _NKS algorithms

implemented via PETSc in the "legacy" context. This section presents a brief overview of the governing

equations and boundary conditions; additionM details can be found in [83, 84]. Sections 3.1 and 3.2 are

standard; the material in Sections 3.3 and 3.4 describes modifications of general importance to implicit

solvers.

The original JULIANNE code has a discrete Newton-relaxation pseudo-transient continuation solver

with explicit enforcement of boundary conditions. We retained the discretization as embodied in flux

balance routines for steady-state residual construction and finite-difference Jacobian construction. The

function evaluations are undertaken to second-order in the upwinding scheme, and the Jacobian matrix

(used mainly as a preconditioner, but also tested as an explicit Jacobian) is evaluated to first order. We

replaced the explicit boundary conditions with a fully implicit variant [73] and added the Van Albada

limiter [2] option to three limiter options provided.

3.1. Governing Equations. The governing system of PDEs for inviscid steady-state flow can be

expressed in coordinate-invariant form by

(3.1) v-(pu) = o,

(3.2) v. (puu + vI) : o,

(3.3) v. ((pe+ p)u) = o,

10

wherep, u, and e represent the density, three-dimensional velocity, and energy density fields, respec-

tively, and the pressure field p is determined by an algebraic equation of state,

P _ v2 + w2),e-- + p(u 2 +
"7-1

where _, is the ratio of specific heats.

In the computational example of this paper, we work on a mapped structured grid of "C-H" type,

in which the Cartesian coordinates (x, y, z) are functions of (_, _?,4), discretely indexed by (i, j, k). The

Jacobian of the coordinate transformation,

J = x_(ynz _ - z,Ty_) - y_(x,Tz ¢ - znx¢) + z_(xnY_ - ynx¢),

appears briefly in this section only and is not to be confused with the Jacobian matrix of Newton's

method. In addition to the Cartesian velocities (u, v,w), it is convenient to consider the velocities in

the mapped coordinate system, (U, V, W), the so-called contra-variant velocities, defined by

U = _u + _yv + _zw,

V = 77_u + _?uv + _?zw,

W = Cxu + Cyv + ¢_w.

In the standard notation (see, e.g., [33]), the transient form of the Euler equations (3.1) is given by

(3.4) 0Q OF OG OH
0-7 + + + =0,

where

pu

Q = J pv ,

pw

e

and the flux vectors take the form

puU + _xP puV + _p puW + _xP

F = J pvU + _yp , G = J pvV + _yp , and H= J pvW + Cup •

pwU + _zP pwV + _?zP pwW + _zp

(e+ p)v (e+ p)y + p)w

The conservation form of (3.4) can also be written in the quasilinear form

o_+A +B +C =0,

DF OG OH
which defines the pointwise flux Jacobians A = _OO, B _ _-_O,and C --- _Q.

11

3.2. Finite Volume Scheme. The system (3.4) is discretized via a finite volume scheme in which

simplicial control volumes are centered on the vertices [84]. Using first-order backward differencing in

time, one can express the resulting discrete nonlinear system as

Qn+l _ Q_
(3.5) i,#,k _,#,k + 5iF(Qn+l) + 5jG(Qn+I) + 5kH(Qn+l) = o,

At

where

5_F(Q _+1) = Fi+I/2(Q _+1) - Fi_I/2(Q_+I),

and Fi+I/2(Q _+1) denotes the numerical flux at cell face i + 1/2; analogous definitions hold for the

remaining terms of (3.5). The numerical flux is computed by augmenting the first-order term that

results from Roe's approximate Riemann solver [33, 64] with a second-order component. Details of

the formulation, which now can bc considered standard, are beyond the scope of this paper but are

presented in [84].

3.3. Flux Limiters. Flux limiters are typically used when upwind discretization techniques are

applied to flows with supercritical phenonema or matcrial interfaces in order to produce steady-state

solutions that avoid unrealistic oscillations (that would be properly damped by the model if the scales

on which molecular viscosity acts could affordably be represented). Differentiability of the limiter is

required when using derivative information in the numerical scheme. Unfortunately, many popular

limiters were designed for solution algorithms of dcfect correction type, in which the true Jacobian

never appears on the left-hand side, and are nondifferentiable (e.g., Van Leer, Superbee, Minmod) and

are therefore inappropriate for direct use in Newton methods [80].

As we show in Section 6.3, this problem is not just of theoretical concern but is a weakness of

such limiters in the matrix-free context, since they can cause stagnation or breakdown of the numerical

scheme. Thus, for all experiments in this paper, we use the Van Albada limiter [2].

3.4. Boundary Conditions. Ghost (or "phantom" or "halo") cells are used so that the interior

Euler equations, discretized on a sevcn-point star stencil for each conservation law, may be employed

on vertices up to and including the physical boundaries. Artificial values (generally depending upon

adjacent interior state variable values) are specified at the ghost vertices to complete these stencils.

The values at the ghost vertices are included in the unknown state vector, and the partial derivatives of

the ghost-vertex boundary conditions with respect to the ghost unknowns are included in the implicitly

defined Jacobian; however, these additional values do not represcnt any additional resolution of thc

physical problem. (For this reason, we regard the coarse, medium, and fine grids in Section 6 as having

recursively "doubled" dimensions of the form (2Pn_ + 2) × (2Pn u + 2) × (2Pnz + 2), for p = 0, 1, 2,

respectively, even though the number of algebraic unknowns, including ghostpoints, does not precisely

double.)

In thc C-H mapped coordinate system used in our simulation (see Fig. 3.1), four types of bounding

surfaces at extremal values of the three indices arc used to enumerate the gridfunction values: k indexes

the transverse direction, from low k at the root of the wing, to ktip in the plane of the wingtip, to high

k in the transverse freestream; j indexes the normal direction from low j on the wing itself to high

j in the frecstream; and i wraps longitudinally around the wing and along the C-cut, from low i on

the lower side in the rear of the wake, forward through ilow_r,te at the trailing edge, through il_ at the

12

q III"

Mesh Cross-Section: Constant-K Surface

0.2_

-0.2

-0.4

-0.6!

-0.2 0 0.2 0.4 0.6 0.8 1 1.2

o2I
0.15

0.11

0.05

0

-0.05

-0,1

-0.15

-0.2
0

Mesh Cross-Section: Constant-J Surface

Subset Above Upper Wing Surface

0.2 0.4 0.6 0.8 1

FIG. 3.1. Constant-coordinate cuts of the "medium" grid: (a) a clipped cross-section of the eonstant-k surface

five cells away from the wing root; (b) a clipped perspective of the constant-j surface on the upper side of the

wing, looking in from the outboard front of the wing. (Index i wraps around the wing streamwise.)

leading edge, rearward across the upper surface of the wing through iupper,te, and finally to high i on

the upper side in the rear of the wake region.

The root of the wing (low k) is considered to be a symmetry plane, with the k -- 1 values set equal

to their k = 2 counterparts. For points in the wake region and beyond k_=p of the wing, where for low j

and for each k, a range of i indices maps gridpoints on either side of the C-cut back on themselves, the

values at ghost vertices are set equal to the corresponding interior values on the other side of the cut.

For the freestream and impermeable wing surfaces, we use locally one-dimensional characteristic

variable boundary conditions, which are briefly summarized below; see, for example, [83] for details. At

each constant-coordinate surface on which a boundary condition must be derived, the nonconservative

form of the Euler equations is locally linearized. Characteristic values (eigenvalues) and variables (right

eigenvectors) are determined for the 5 × 5-block of the flux Jacobian matrix (A, B, or C) that premul-

tiplies the derivatives of the primitive variables in the direction normal to the bounding surface. Terms

involving derivatives in the plane of the bounding surface are set to zero. The sign of the each charac-

teristic value determines whether the corresponding characteristic variable propagates information into,

or out of, the computational domain.

In our test cases, we need consider only subsonic inflow and outflow boundaries and impermeable

boundaries. The cases of supersonic inflow and outflow are considered in, for example, [83]. At subsonic

inflow, four characteristics enter the domain and may be fixed at Dirichlet values from the freestream.

One characteristic exits the domain and is set by extrapolation from adjacent interior values. Five

algebraic relationships are thereby derived for the five values at each ghost vertex. At subsonic outflow,

the opposite situation prevails: one characteristic variable is set from freestream conditions, and four

are extrapolated. On impermeable surfaces, one characteristic enters the domain and is set by the

condition of no-flow across the surface. This, in effect, provides the pressure. The remaining values are

set by extrapolation so as to satisfy the no-flow constraint on the physical boundary. As illustrated in

one of the experiments to follow, and as discussed by Whitfield & Taylor in [84] and for similar problems

13

by Tidriri [73, 74], the implicit form of these boundary conditions is needed to maintain stability as

timesteps adaptively increase.

All of the boundary conditions for the ghost vertex unknowns are local (involving, at most, values

at immediately interior vertices), with the exception of the C-cut ghost-to-interior identity mappings.

For traditional lexicographic orderings of the gridpoints, the entries of the Jacobian matrix that tie

together these spatially identical but logically remote degrees of freedom lie outside of the normal band

structure, and would, if used, generate extensive fill in a full factorization. We thus choose to include

these nonzeros in the matrix-free action of the 3acobian only, not in the Jacobian preconditioner.

4. ffJNKS Algorithmic Details. Careful attention to details of CFL advancement strategies

and matrix-free Jacobian-vector product approximations is crucial for the successful implementation of

k_NKS methodology for large-scale problems. This section discuss these issues in some detail.

4.1. CFL Advancement. We use a locally adapted pseudo-timestep of the form Tij k : _ijkNcFL,

where _jk is a ratio of signal transit time (based on local convective and acoustic velocities in each

coordinate direction) to cell volume and NCFL is a global dimensionless scaling factor, which would

have to be kept of order unity to satisfy explicit stability bounds on the timestep and which should

approach oc for a steady-state Newton method. The constraints on CFL advancement in our implicit

context are the robustness of the nonlinear iterative process and the cost of the iterative linear solver.

We employ an advancement strategy based on the SER technique [56],

N_FL jVt-1 Hf(Ue-2)ll
:- "'CFL Hf(ue-1)H '

with clipping about the current timestep so that CFL increases by a maximum of two and decreases

by no more than ten at each step. Experiments show that when the linearized Newton systems are

solved sufficiently well at each step the CFL may often advance according to this strategy without further

restrictions. 3iang & Forsyth [36] discuss conditions under which more stringent measures are needed to

limit CFL advancement. Experiments on compressible flows with this strategy alone in [40] occasionally

led to NaNs, which were attributed to negative densities. Whereas in a conventional Newton-like method

an infeasible Newton update _u t can be caught before evaluation of f(u _-1 + At_ut), and Al cut back

accordingly for robustness, a matrix-free Newton code may '_probe" f(.) at an infeasible point while

building up the Krylov subspace. Thus, the input to every call to the subroutine that evaluates f(-)

must be checked. In the pseudo-transient context an infeasible state vector may be handled the same

way convergence stagnation is handled [40], namely, by restoring the state at the previous timestep and

recommencing the current timestep with a drastically reduced NeE L.

Matrix-free 3acobian-vector products are defined by directional4.2. Matrix'Free Methods.

differencing of the form

y(u + hv) - y(u)
y'(u)v _ h '

where the differencing parameter h is chosen in an attempt to balance the relative error in function

evaluation with the magnitudes of the vectors u and v. Selection of an appropriate parameter is

nontrivial, as values either too small or too large will introduce rounding errors or truncation errors,

respectively, that can lead to breakdowns. Investigators with relatively small, well-scaled discrete

14

problems(guidedbyawisenondimensionalization)sometimesreportsatisfactionwithasimplechoiceof
h, approximately the square root of the "machine epsilon" or "unit roundoff" for their machine's floating-

point system. A typical double-precision machine epsilon is approximately 10 -18, with a corresponding

appropriate h of approximately 10 -s. More generally, adaptivity to the vectors u and v is desirable.

We choose the differencing parameter dynamically using the technique proposed by Brown and

Shad [9], namely,

erel

h = 17 lpmax DuTvl,typ TIvl] sig (Wv),

where Iv] ----[Iv1], ..., Ivn I]T, typu = []typul], ..., Itypu_H T for typuj > 0 being a uscr-supplied typical size

of uj and erel _ square root of relative error in function evaluations.

Determining an appropriate estimation of the relative noise or error in function evaluations is

crucial for robust performance of matrix-free Newton-Krylov methods. Assuming double-precision

accuracy (or e_t _- 10 -s) is inappropriate for many large-scale applications. A more appropriate

relative error estimate for the compressible flow problems considered in this work is e_z ---- 10 -s,

as determined by noise analysis techniques currently under investigation by McInnes and Mor6 [54].

When evaluating gradients too close to the noise level in a given problem, we have found that otherwise

identical executions may converge on one system with a given floating-point convention for rounding

and fail to converge in a reasonable time on another with a different rounding convention. Backing off

to larger values of h generally resolves such discrepancies.

Taking h too large is one of many ways of damping the nonlinear iteration in NKS methods, in

that it replaces a tangent hyperplane estimate with a chordal plane estimate. However, we do not

recommend using h to control the nonlinear convergence in this manner. It should generally be taken

as close to the noise level as robustness requirements permit, and damping should be applied more

consciously at a higher level in the code.

In addition to evaluating the Jacobian-vector products with directional differencing within GMRES,

the preconditioner is constructed in a blackbox manner, without recourse to analytical formulae for the

Jacobian elements, by directional differencing as described in [84] and as provided in the JULIANNE

code.

Another approximate Jacobian-vector product derived from the same multivariate Taylor expan-

sion that underlies the finite-difference approximations above, which is, however, free of subtractive

cancellation error, has recently been rediscovered by Whitfield & Taylor [85]. It features an imaginary

perturbation,

f(u + ihv) -- f(u) + ihf'(u)v + c20(h 2) + ic30(h3),

about any point u, where f, interpreted as a complex function of a complex-valued argument, is analytic.

Here, u and v are real vectors. When f is real for real argument, as is true for the Euler equations, all

quantities except for i in the expansion above are also real; therefore, by extracting real and imaginary

parts, we can identify f(u) = Re[f(u + ih)] + O(h 2) and f'(u)v = Im[f(u + ihv)]/h + O(h2). Special

care is needed for Roe-type flux functions and any other nondifferentiable features of f(u), but with

minor code alterations, both f(u) and f'(u)v are available without subtraction from a single complex

evaluation of f(u). Implications for evaluation of sensitivity derivatives by this technique are explored

in [58].

15

5. Parallel Implementation Using PETSc. This section discusses some issues that arise in thc

transition of a legacy code originally developed for uniprocessor vector architectures to a distributed-

memory variant. After providing an overview of our conversion strategy, we discuss some performance

optimizations for memory management, message passing, and cache utilization.

The parallelization paradigm we recommend in approaching a legacy code is a compromise between

thc "compiler does all" approach, for which some in the scientific and engineering communities have

been waiting many years now, and the "hand-coded by expert" approach, which some others insist is still

the only means of obtaining good parallel efficiency. We employ PETSc [4, 5], a library that efficiently

handles, through a uniform interface, the low-lcvcl details of thc distributed-memory hierarchy. Exam-

ples of such details include striking the right balance between buffering messages and minimizing buffer

copies, overlapping communication and computation, organizing node code for strong cache locality,

preallocating memory in sizable chunks rather than incrementally, and separating tasks into one-timc

and every-time subtasks using the inspector/executor paradigm. The benefits to be gained from these

and from other numerically neutral but architecturally important techniques are so significant that it

is efficient in both programmer time and execution time to express them in general-purpose code.

PETSc is a versatile package integrating distributed vectors, distributed matrices in several sparse

storage formats, Krylov subspace methods, preconditioners, and Newton-like nonlinear methods with

built-in trust region or line search stratcgies and continuation for robustness. It has been designed to

provide the numerical infrastructure for application codes involving the implicit numerical solution of

PDEs, and it sits atop MPI for portability to most parallel machines. The PETSc library is written

in C, but may be accessed from user codes written in C, Fortran, and C++. PETSc has features

relevant to computational fluid dynamics, including matrix-free Krylov methods, blocked forms of

parallel preconditioners, and various types of timestepping.

5.1. Converting Legacy Codes. Converting a legacy code to a production parallel version in-

volves two types of tasks: parallelization and performance optimization. Abstractly, parallelization

includes the discovery or creation of concurrency, orchestration of data exchange between the concur-

rent processes, and mapping of the processes onto processors.

For converting structured-grid legacy codes, the major reprogramming steps are essentially: con-

verting global data structures in the legacy code to distributed data structures provided by the domain

decomposition library; replacing domain-wide loop bounds with subdomain-wide loop bounds in the

routines that evaluate the governing equation residuals and Jacobian elements; and parameterizing the

solution algorithm supplied by the library, which ordinarily replaces the solution algorithm in the legacy

code.

A coarse diagram of the calling tree of a typical qJNKS application appears in Fig. 5.1. The top-

level user routine performs I/O related to initialization, restart, and postprocessing; it also calls PETSc

subroutines to create data structures for vectors and matrices and to initiate the nonlinear solver.

Subroutines with the PETSc library call user routines for function evaluations f(u) and (approximate)

Jacobian evaluations J(u) at given state vectors. Auxiliary information required for thc evaluation of f

and J that is not carried as part of u is communicated through PETSc via a user-dcfincd "context" that

encapsulates application-speeific data. (Such information would typically include dimensioning data,

grid geometry data, physical parameters, and quantities that could be derived from the state u but are

most conveniently stored instead of recalculated, such as constitutive quantities.)

16

Main Routine

!
Nonlinear Solver (SNES)

Application Function Jacobian Post-
Initialization Evaluation Evaluation Processing

FIG. 5.1. Coarsened calling tree of the JULIANNE-PETSc code, showing a user-provided main program and user-

provided callback routines for supplying the initial nonlinear iterate, evaluating the nonlinear residual vector at a PETSc-

requested state, and evaluating the Jacobian (preconditioner) matrix.

We emphasize that the readiness of legacy codes for high-performance parallel ports of any kind

varies considerably. Codes making heavy use of COMMON blocks should first be transformed to

passed-argument form and made to execute at high computation rates on a cache-based uniprocessor.

This process will often involve combining component fields of u found in separate arrays into a single

interleaved structure, with contiguous locations in memory corresponding to unknowns associated with

the same gridpoint, rather than with the same component field at an adjacent gridpoint. Codes in which

solver, function evaluation, and Jacobian evaluation logic are interwoven should be modularized so that

function and Jacobian evaluation routines can be cleanly and independently extracted. (Some codes

use common gradient and flux evaluation logic in the subassembly of function and Jacobian evaluation,

a practice we applaud. However, such common code should normally be isolated for separate calls from

each major routine.)

For memory economization and high performance, we have found it advantageous to transfer ele-

ments of f and J into the distributed PETSc data structures in dense blocks of intermediate size, rather

than to form an entire copy of f or J in some other user data structure and then transfer it.

5.2. Memory Management-Oriented Optimizations. Many code developers have observed

that dynamic memory management within PDE-based simulations, particularly through the C library

xnalloc and free routines, can consume significant amounts of time. In addition, even when im-

plemented efficiently, such allocation can lead to memory fragmentation that is not well suited to

cache-based memory hierarchies. Further, reallocation of memory space to enlarge a memory array

often requires that data be copied from an old area to a new area. This memory copy does no useful

work and can lead to a loss in performance. Since parallel sparse matrix memory management can be

particularly challenging, we discuss some techniques to aid its efficiency; many of these ideas also apply

to management of vectors, grids, and so forth.

5.2.1. Memory Preallocation. PETSc provides a number of ways to preallocate sparse matrix

memory based on knowledge of the anticipated nonzero structure (corresponding to mesh connectivity).

However, PETSc does not require preallocation; this approach avoids having programs fail simply

17

because sufficient memory was not preallocated. PETSc also keeps track of mcmory use; this profiling

information can be very valuable in tracking usage patterns and identifying memory problems.

5.2.2. Aggregation in Assembly. A related issue is that of the granularity of operations, par-

ticularly for matrix assembly. It is common to define operations in terms of their most general, single-

clement form, such as "set matrix element to value" or "add value to matrix clcment." This approach

is inefficient, however, because each operation requires a number of steps to find the appropriate entry

in a data structure (particularly for sparse matrix formats). Thus, PETSc includes a variety of opera-

tions for handling larger numbers of elements, including logically regular dense blocks. Such aggregate

optimizations significantly improve performance during operations such as matrix assembly.

Within the subject parallel compressiblc flow code, we specify in advance the sparsity pattern for

the first-order approximation of the Jacobian that serves as the preconditioner. Thus, all matrix storage

space is preallocated once and is then continually reused as the nonlinear simulation progresses. Matrix

elements are assembled in aggregates of five, as they are naturally computed for this problem.

5.3. Message Passing-Oriented Optimizations. Any kind of communication of data between

parallel processes involves two steps: the transfer of data and the notification that the transfer has

completed. Message passing combines these two operations: for each message sent, there is a "synchro-

nization" that indicates when the data is available for use. (In the case of shared-memory programming,

this synchronization is implemented through locks, flags, or barriers.) Such synchronizations can be a

source of performance problems; efficient code tries to defer any synchronization until the last possible

moment. The PETSc approach to communication aims to balance ease of use and efficiency of im-

plementation; it does not attempt to completely conceal parallelism from the application programmer.

P_ther, the user initiates combinations of high_lcvel calls, but the library handles the detailed (data

structure-dependent) message passing. For a detailed philosophy of PETSc implementation, see [3].

5.3.1. Multiphase Exchanges. A common way to avoid problems due to early synchronization

is to divide an operation into two parts: an initiation and a completion (or ending) phase. For examplc,

asynchronous I/O uses this approach. The MPI message-passing standard [55] provides asynchronous

operations; send and receive operations are divided into starting (e.g., MPI_Isend or NPI_Irecv) and

completion (e.g., MPI_Wait) phases. PETSc takes the same multiphased approach with other operations

that would otherwise suffer from severe performance problems, including matrix assembly of nonlocal

data and generalized vector scatter/gathers. For example, the starting version of these operations

issues the appropriate MPI nonblocking communication calls (e.g., gPI_Isend). The ending version

then concludes by using the appropriate completion routine (e.g., MPT_Waitall). Because the PETSc

operations explicitly defer their completion, it is easy to change the underlying implementation to take

advantage of different optimization approaches, including alternate MPI operations (e.g., persistent

(NPI_]_send_init)) or even non-MPI code (e.g., one-sided or remote memory operations).

5.3.2. Algorithmic Reduction in Synchronization Frequency. Pseudo-transient Newton-

Krylov methods make extensive use of inner products and norms, which are examples of global reduc-

tions or commutatives and impose global synchronization on the parallel processes. The inner products

are associated primarily with the conjugation process in the Krylov method. The norms are associated

with the Krylov method, with convergence monitoring, and with various stability and robustness fea-

tures in the selection of the timestep, the linesearch parameter, and the Fr_chet differencing parameter.

18

Toreducethepenaltyof thesesynchronizations,PETScoffersoptionssuchasanunmodifiedGram-
Schmidtoperationin GMR_S[65],andlaggedparameterselection.In severecircumstancesit would
beunwiseto backofffromtherobustpracticesof modifiedGram-Schmidtandfrequentrefreshingof
thc Fr_chetparameteror the CFLnumber.All of thecasesdescribedherein,however,usedeferred
synchronizationvia unmodifiedGram-Schmidtandreevaluateotherparameterslessfrequentlythan
dictatedbyconventionalsequentialpractice.

5.4. Cache-OrientedOptimizations. Cache-orientedoptimizationsarccrucial,sincegoodovcr-
all parallelperformancerequiresfastper processor computation as well as effective parallel algorithms

and communication. Scalability studies often omit attention to single-node performance optimization

and thereby demonstrate high scalability on code that nonetheless makes inefficient user of the hard-

ware, overall. Here we discuss three optimization strategies: exploitation of dense block operations,

field component interleaving, and grid reordering.

5.4.1. Exploitation of Dense Block Operations. The standard approach to improving the

utilization of memory bandwidth is to employ "blocking". That is, rather than working with individual

elements in a preconditioning matrix data structure, one employs blocks of elements. Since the use of

implicit methods in CFD simulations leads to Jacobian matrices with a naturally blocked structure (with

a block size equal to the number of degrees of freedom per cell), blocking is extremely advantageous.

The PETSc sparse matrix representations use a variety of techniques for blocking, including

• a gencric sparse matrix format (no blocking);

• a generic sparse matrix format, with additional information about adjacent rows with identical

nonzero structure (so called I-nodes); this Lnode information is used in the key computational

routines to improve performance; and

• storing the matrices using a fixed (problem-dependent) block size.

The advantage of the I-node approach is that it is a minimal change from a standard sparse matrix

format and brings a relatively large percentage of the improvement one obtains via blocking. Using a

fixed block size delivers the absolute best performance, since inner loops can be hardwired to a particular

size, removing their overhead entirely.

Table 5.1 presents the floating-point performance for a basic matrix-vector product and a triangular

solve obtained from an ILU(0) factorization using these three approaches: a basic compressed row

storage format, the same compressed row format using the I-nodes option, and a fixed block size code

(with a block size of five). These rates were attained on one node of an IBM SP2 for a coarse grid

Euler problem of dimension 25,000 (described in Section 6.1). The speeds of the I-node and fixed-block

operations are several times those of the basic sparse implementations. These examples demonstrate

that careful implementations of the basic sequential kernels in PETSc can dramatically improve overall

floating-point performance relative to casually coded legacy kernels.

TABLE 5.1

Basic kernel flop rates (Mflop/s).

Kernel Basic I-Node Version Fixed Block Size

Matrix-Vector Product 28 58 90

Triangular Solves from ILU(0) 22 39 65

19

Muchof the approximateJacobianmatrixhasblock-bandstructurecorrespondingto thethree-
dimcnsional,seven-pointstencil,withfivedegreesoffreedompernode(three-dimensionalmomentum,
internalenergy,anddensity).WeusethePETScmatrixformatfor block,compressed,sparserows
(blockCSR)to exploitthisstructure.

5.4.2. Field Component Interleaving. For consistency with the matrix storage scheme and to

exploit better cache locality within the application portion of code, we modified the original nonlinear

function evaluation code to use the same interleaved ordering employed for matrix storage for the Q-

vector instead of the original field-oriented ordering. Table 5.2 compares the performance of these two

orderings for local function evaluations (excluding the global-to-local scatters needed to assemble ghost

point data). The timings within this table for a single function evaluation were computed from overall

execution times and iteration counts collected during a complete nonlinear simulation for a problem of

matrix dimension 158,600 (see Section 6.1). These performance studies indicate a savings for the local

function evaluation component of between 4 and 20% on the SP2, depending on the ratio of cache size

to problcm size. Similar results are reported in [19].

TABLE 5.9.

Comparison of multicomponent orderings for local function evaluations with five degrees of freedom per node.

Number of

Processors

1

2

4

8

16

Time for a Singlc Function Evaluation (sec)

Noninterlaced Interlaced

.983

.477

.237

.115

.061

.779

.375

.191

.103

.056

Percentage

Improvement

21

21

20

10

7

5.4.3. Grid Reordering. Another technique that can improve cache utilization is the reordering

of grid entitics. This is discussed in [44] for unstructured grids but not employed in the structured-

grid computational examples of this paper, where its use would destroy one of the main advantages of

structured grids, namely, the ability to employ direct addressing to locate data at neighboring vertices

(or cells, in cell-centered codes). The idea behind grid reordering for enhanced cache residency in an

edge-based CFD code is simple: vertices that share an edge need to have their data co-resident in the

cache to compute the flux along the edge. If edges common to a vertex are ordered near each other,

the data at that vertex may suffer as little as one (compulsory) cache miss during a flux-computation

cycle. If edges are ordered in a greedy way, away from the initial set of edges, there may be low data

miss rates on average throughout the entire domain for the entire cycle. It remains to be seen whether,

in processors with deep mcmory hierarchies, the data locality enhancements possible with unstructured

problems can overcome the overheads (in time and space) of indirect addressing.

5.5. Importance of Profiling. Profiling a code's overall performance for realistically sized prob-

lems, including timings, floating-point operations, computational rates, and message-passing activity

(such as the number and size of messages sent and collective operations), is crucial for gaining an

2o

understandingof sectionsthat canbenefitmostfromperformanceenhancementsandparametertun-
ing. WehaveemployedtheautomaticprofilingcapabilitieswithinPETSc[4]to targetperformance
enhancementsfortheparallel_NKSmethodsof thiswork.

Suchprofilingindicatesthatthroughouta completematrix-freenonlinearsimulationusingblock
sparsematrixdatastructures,thesolutiontime(forvariousproblemsizesandprocessorconfigurations,
includingallassociatedcommunicationoverheads)isroughlydividedasfollows:

• 1%forinitialization(includingparallelmeshpartitioningandsetupof vectorscatter/gathers
forhandlingghostpointdata),

• 16%for formationof the linearizedNewtonsystems(includingright-hand-sidevectorsand
laggedfirst-orderpreconditionermatrices),

• 82%forlinearsystemsolution,and
• 1_ forothernonlinearsolveroperations.

Furtherbreakdownof the linearsolvephaseindicatesroughly2%of overalltimedevotedprccondi-
tionersetup(includingdeterminationofadditiveSchwarzoverlapandincompletcfactorizationofeach
processor'slocalsubmatrix),17%for preconditionerapplication,59%for matrix-freeJacobianovector
products,andtheremainderfor othervectoroperations.Theefficiencyof thesparsenumericallinear
algebrahasresultedfromtuneddatastructuresandmessage-passingactivity,asdiscussedabove.The
dominanceoffunctionevaluationtimewithinthetotalsolutionprocesshasledustofocusonthetuning
ofvariousnumericalparametersto aimforthefewestpossibleoverallfinegridfunctionevaluations(or
fluxbalances)neededto achievesteadystate.

6. Numerical Experiments.Weillustratein thissectiontheimportanceof someofthedesign
decisionsabovein thecontextof a legacyCFDapplicationthat hasbeenparallelizedandaccelerated
through_NKS.Webrieflydescribethetestproblemsandthendiscussissuesof boundaryconditions,
limiters,preconditionerquality,convergencetuning,andscalability.

6.1. TestProblems. TheON-ERAM6wingisastandardthree-dimensionaltestcase,forwhich
extensiveexperimentaldatais givenin [66].A frequentlystudiedparametercombinationcombines
a freestreamMachnumberof 0.84with anangleof attackof 3.06°. This transonic case gives rise

to a characteristic)_-shock, as depicted within Fig. 6.1. As discussed in Section 3, the basis for our

implementation is a legacy sequential Fortran77 code (JULIANNE) by Whitficld _z Taylor [84].

Tests on three different successively doubled grid resolutions, the sizes of which are given in Ta-

ble 6.1, provide a demonstration of the grid independence of the solution, as evidenced by the agreement

of the overall values of CL (lift) and Co (drag) on the intermediate and finest grids in Fig. 6.2. Com-

parisons of the aerodynamic coefficients with the data in [66] replotted in Fig. 6.3 show reasonable

agreement for an inviscid model.

TABLE 6.1

Test problem dimensions (system size includes boundary ghost nodes).

Grid Dimensions System Size Nonzeros in Jacobian Approx.

50 × 10 × 10 25,000 622,120

98 × 18 × 18 158,760 4,636,200

194 × 34 × 34 1,121,320 35,742,760

21

FIG.6.1.Mach number contours (the local tangential velocity magnitude divided by the local sound speed) of the

converged flowfield on the upper wing surface for the finest grid.

Convergence Rate: Wing Lift and Drag Coefficients
0.4

0.35

 =o3

8 0.25

_3 0.2

_0.15
,..J

_' o.1

0.05

%-

!.....- oe,_t _cient

f i

I / t

• C-2a . seM h
, Y - - - Medium Mesh

Fine Mesh

Drag Coefficient

iloo
Iteration Number

FIG. 6.2. Dimensionless aerodynamic functionals CL and C D as functions of pseudo-transient iteration step on the

coarse, medium, and fine grids.

Thus far, we have employed only the simplest decomposition strategies in inducing locality in the

Schwarz preconditioner: recursive bisection cuts along the i, j, and k coordinate directions to create

subdomains. The order of the cuts is determined so as to produce subdomains that are as close to

unit aspect ratio as possible in logical space, a strategy that minimizes communication volume. Given

the 6:1 logical aspect ratio of the full domain, the first three cuts are made in the i direction. Beyond

eight processors, the j and then the k directions arc also partitioned. On the basis of investigations

of domain decomposition preconditioners on othcr flow problems [11, 32], it is well known that there

can be a strong interaction between flow direction and cutting planes. Our study of this phenomenon

in the present problem and a collection of others will appear elsewhere. The main implication of the

partitioning strategy in interpreting the scalability results of this section is that the linear conditioning

is affected by the number and orientation of the cuts and that performance results for different ways of

obtaining p-fold concurrency will generally differ from the samples included. Furthermore, for tunings

22

of _NKS in which the linear systems are only very incomplctely converged, such as ours, the nonlinear

trajectory of convergence can be affected by the cut.

Experimental Pressure Distributions at the 45% Span Location

1.5 Upper Surface (Simulation)

Lower Surface(Simulation)

Upper Surface (AGARD)

A l'\ Lower Surface (AGARD)

1 ___ __
0.5 _ _

-0.

-1
0 012 014 0.6 0.8

X/C

FIC. 6.3. Dimensionless aerodynamic functional Cp(x) from leading to trailing edge, upper and lower wing surfaces,

at 45_o of wingspan, and comparison with experiment.

2

o

_-2

o
-4

15
_'-8

_ -10

-12

Number of Nonlinear Iterations (Medium Mesh, 2 Processors

Exp BC, Exp Jac (Constant CFL}
-- Imp BC, Exp Jac (Constant CFL)

- - - Imp BC, Exp Jac (Advancing CFL)
-- Imp BC, Matrix-Free Jac (Advancing CFL)

,, "-. ::?

Computation Times (Medium Mesh, 2 Processors)

2[[F_ Be,Exp_ (CO_t_Cn-_
0J=_J / Imp BC, Exp Jac (Constard CFL)

Ill [- - - _p ec, _ Jac (Ao'var_ngCFL)
/_1 I -- Imp BC, Matrix-Free ,Jac (Advancing CFL)

-2_ _....

-14 L -14
0 100 200 300 400 500 600 700 800 0 200 400 600 800 10(X} 1200 1400 1600 1800

Iteration Number _me (Seconds)

FIG. 6.4. Comparison of four globalized solution algorithms, sho_ng the cumulative advantages of implicit BCs,

advancing CFL, and matrix-free representation of the Jacobian, in terms of both iteration count (number of pseudo-

timesteps) and overall execution time on an IBM SP£.

6.2. Implicit Boundary Conditions and Matrix-free Jacobian Action. Figure 6.4 com-

pares the convergence in terms of both nonlinear iterations and total time of the various approaches

under consideration: explicit boundary conditions (limiting CFL to 7.5), implicit boundary conditions

with the same CFL, implicit boundary conditions with advancing CFL, and implicit boundary condi-

tions with advancing CFL and matrix-free application of the Jacobian. This figure presents performance

data for the medium mesh problem run on two processors of the SP2; the relative convergence rates

and timings are analogous for the other test problems under consideration for various machines and

processor configurations. Whenever required, the explicit 3acobian is computed to first-order accu-

23

racy in space via finite differences, stored with the block sparse scheme discussed in Section 5.4, and

refreshed once every ten pseudo-timesteps. This Jacobian served as the left-hand-sidc matrix of the

Newton systems (corresponding to (2.11)) or as the preconditioner for the matrix-free method. This

frequency of Jacobian recomputation provides a reasonable trade-off in terms of convergence rate and

the computational cost of matrix evaluation.

For the cases in Fig. 6.4, we solved the linearized Newton systems approximately with a relative

linear convergence tolerance of 10 -2 using preconditioned CMRES. For the matrix-free variant we

employed the additive Schwarz preconditioner with an overlap of 1 cell, and for the other cases we

used the cheaper but sufficiently powerful block Jacobi method (equivalent to additive Schwarz with

no overlap); both versions used one subdomain block per processor, solved with ILU(0) (the issue of

preconditioner quality is discussed in Section 6.4). When retaining a fixed CFL of 7.5, only 3 4 linear

iterations were required for each step to reach the 10 -2 tolerance for both explicit and implicit boundary

condition variants. Experiments indicate that because of the mismatch of first-order and second-order

schemes in the left- and right-hand sides of these defect correction methods, more accurate linear solves

and more frequent Jacobian refrcshment do not appreciably accelerate convergence. For the cases with

increasing CFL, the linear systems become more challenging to solve as they transition toward true

Newton systems, requiring up to 30 iterations to rcach the specified 10 -2 tolcranee when CFL reaches

its maximum value of 105 . The quality of linear solves is further discussed in Section 6.5.

The key observation from this data is that the combination of implicit boundary conditions coupled

with the higher-order discretization enabled by the matrix-free technique solves the nonlinear problem

to machine precision several times faster than does the defect correction method. Neither the use of

implicit boundary conditions alone nor the use of increasing CFL with a low-order Jacobian allows thc

approach of quadratic convergence. Wc also note, on the basis of analogous experiments with thc other

problem sizes considered in the paper, that the impact of using this combination increases with problem

size.

In addition to pseudo-time continuation, the original JULIANNE code employs a subtle form of con-

tinuation in boundary conditions. The boundary conditions for mass dcnsity and energy density at the

impermeable wing surface are initially of simple Neumann type, and are switched to full characteristic

boundary conditions only after the tenth pseudo-timestep. (This accounts for the spikes seen in the

steady-state residual norm histories in Figs. 6.4 6.8.) We have found this device to be important for

robustness in a fully implicit approach in which the steady-state residuals are evaluated to second order

from the outset. Alternatively, we have employed full characteristic boundary conditions for all vari-

ables from the outset in a first-order discretization, and then switched to a second-order discretization

after approximately 10 -2 reduction in the steady-state residual norm.

6.3. Differentiable Limiters. As discussed in Section 3.3, differentiability of limiters is essential

when using derivative information in the numerical scheme. When using matrix-free differencing ap-

proximations of Jacobian-vector products, differentiable limiters are required to avoid breakdown (as

manifested by the introduction of NaNs in the iterate update) or stagnation. Figure 6.5 shows con-

vergence stagnation when the coarse mesh is run with the nondifferentiable Van Leer limiter and the

penetration of this stagnation with the Van Albada limiter.

24

1: • I -

o

z

er
"6 -6

-lO

-12
0

Comparison of Limiters (1 Processor, Coarse Mesh)

_ Van Albada Limiter(Differentlable)

Van Leer Llmlter(Nondifferenttable) [

20 40 60 80 100
teration Number

Illustration of the "hang up" characteristic of nondifferentiable limiters within a nonlinearly implicit

6.4. Preconditioner Quality. Preconditioner quality dramatically impacts the overall efficiency

of the parallel iPNKS methodology, as demonstrated in the closely related Figs. 6.6 and 6.7 for several

variants of additive Schwarz techniques. The graphs within these figures compare convergence rate (in

terms of relative residual norm) versus both nonlinear iteration number (left-hand graphs) and time

(right-hand graphs) for the medium mesh on 16 processors of an IBM SP2; analogous results were

achieved for other problem sizes and processor configurations. All plotted runs use preconditioned

restarted GMRES with a Krylov subspace of maximum dimension 30 and a fixed relative convergence

tolerance of 10 -2 (this issue is discussed in the following section); each processor hosts a single precon-

ditioner block, which is solved via point-block ILU(0).

We contrast in Fig. 6.6 a zero-overlap (subdomain-)block 3acobi preconditioner with a two-cell-

overlap additive Schwarz method (ASM) and a two-cell-overlap restricted additive Schwarz method

(RASM), which were presented in Section 2.4. We observe that modest overlap is important in provid-

ing a high-quality preconditioner that allows the overall numerical scheme to progress rapidly in the

nonlinear sense. Further, we see that the RASM method, which eliminates communication during the

interpolation phase, not only saves time in terms of communication overhead, but also provides more

powerful preconditioning, as evidenced by faster convergence in terms of the nonlinear iteration count.

Figure 6.7 contrasts various degrees of overlap for RASM. In particular, we see that two-cell overlap

provides a good balance in terms of power and cost. Less overlap trades off cheaper cost per iteration for

a preconditioner that does not allow the nonlinear iterations to converge proceed as rapidly, while more

overlap is costly to apply and does not sufficiently contribute to faster nonlinear convergence. Similar

behavior was observed for structured-grid problems at other problem sizes and processor configurations,

even when using other criteria to determine linear inner iteration convergence.

In the context of unstructured tetrahedral grids, where each successive level of subdomain overlap

is defined by following edges incident on vertices belonging to the subdomain at the previous level, our

experience with overlap for RASM has led to a more extreme trade-off. Cost per iteration rises rapidly

with overlap, since a vertex may be a member of 15 or more tetrahedra, and iteration reduction does

25

S

3
-10

-12

Compirlaon Of ASM and RASM preconditionem (18 Processors, Medium Mesh)
2

I

- - ASM/I:tASM: Ovedap 0 I

- - ASM: Ovedap 2 0

J-- RASM: Ovedap 2

-2

" " -12

Comparison of ASM and RASM Pmconditioners {16 Ptocessom, Medium Mesh)

- - ASMfRASM: Ovedap 0

- - ASM: Overlap 2

-- RASM: Ovedap 2

' '('".

i

-140 20 40 60 100 120 1 180 0 100 200 300 400 500 600

Nonlinear Itora_tlon Number Time (sec)

FIG. 6.6. Comparison of three domain-decomposed preconditioners: subdomain-block Jacobi, standard additive
Schwarz with overlap of ,9,cells, and restricted additive Schwarz with overlap of 2 cells. All methods solve point-block

ILU(O) on 16 subdomains on an IBM SP2.

not significantly counterbalance this cost, for the weak levels of linear convergence required. Wc often

use no overlap in such cases.

2

0

-2

-10

-12

-14

Cornp_dlon Of Ovedap for RASM Preconditioner (16 Processors, Medium Mesh)

.___ Ovedap 0 0
Ovedap 1]

-- Owrlap 2] -2

-12

Comps=riion Of Ovedap for RASM Pmconditioner (1$ Processors, Medium Mesh)

Overlap 0 1

- O,,,er_=p_ I

1- _"ap_ I

...... ;o _o -"20 40 80 80 100 120 1 1 100 200 300 400 500

Nonlinear Iteration Number Time (sec)

60O

FIC. 6.7. Comparison of four domain-decomposed preconditioners: subdomain-block Jacobi and restricted additive

Schwarz with overlap of 1, 2, and 3 cells. All methods solve point-block ILU(O) on 16 subdornains on an IBM SP2.

6.5. Convergence Tuning. Convergence tuning for terminating the inner Krylov iterations in

the Newton correction is tightly coupled with preconditioner quality, and the two must be considered

in concert. Figure 6.8 contrasts various convergence criteria using the restricted additive Schwarz

prcconditioner with an overlap of two cells, which was shown in Section 6.4 to bc an effective choice

for the problems considered in this work. This figure presents convergence data in terms of solution

times and work per linear iteration for three methods: fixed Krylov subspace dimension, fixed relative

tolerance for residual norm reduction, and a hybrid strategy that terminates upon the earlier of satisfying

a relative residual norm reduction or exceeding a Krylov subspace dimension. These graphs focus on

26

71: | !

-4

`6

Compri_n of Klylov Tot_"nlnad:_on _; _ Norm ,_.

' 1B P_, Fine Meeh

_ F'_ed _ Tm wi_ Mode_ _ _ D_dm,mkm

F'omd _ Tok_
71

L_

il x

gO

8O

70

5O

"640

I,o i

20

10

O0 500 1000tOO0 1500 2OO0 23OO 3OOO 35OO 1500 2000 2500 3000 380O 4000

Fro. 6.8. Comparison of three different tunings of the linear convergence tolerance: fixed work, fixed relative toler-

ance, and a loose hybrid.

the 16-processor case with the fine mesh, although they are representative of experiments on various

numbers of processors for different problem sizes. The left-hand graph within Fig. 6.8, which plots the

log of thc residual norm versus solution time, indicates that using a loose fixed relative tolerance of

10 -2 is preferable over the other choices when a sufficiently robust preconditioner is employed.

The corresponding right-hand graph better illustrates where within the total simulation process

the bulk of computational work occurs within the linear solves. In particular, we see that the common

practice of specifying a fixed amount of work per nonlinear iteration does not fare as well as alternatives

that focus linear solver work where it is truly needed during the second and third phases of the _NKS

process (recall Section 2.1). The fixed-work casc for this problem employed thirty iterations of GMRES;

experiments with fewer GMRES iterations and more frequent restarts encountered stagnation before

converging to steady state. In contrast, the approaches that use a fixed relative tolerance or hybrid

scheme fared much better.

Strategies that dynamically adjust the linear tolerances to achieve greater relative residual reduction

during steps of the final k_NKS phase and thereby aim for quadratic convergence (e.g., [24]), have been

of limited benefit when a sufficiently robust linear solver is employed. We note that others with strong

incentives to watch the "bottom line" of execution time in production line design use have converged

on fairly loose tolerances for inner linear iterations [87]. However, further investigation of tuning such

strategies should prove valuable.

Figure 6.9 illustrates the evolution of the shock structure (characterized by the number of supersonic

mesh points) as a function of time for the medium and fine meshes. Notice that the number of supersonic

points scales approximately with the number of gridpoints (factor of 8 between the two curves), reflecting

the convergence to a grid-independent feature in physical space. We also observe that each run from a

uniform flow initial iterate passes through the same intermediate condition during which the supersonic

region is larger than its asymptotic value. The duration of this period is inversely proportional to the

resolution, suggesting that the shock advances in units of gridpoints per iteration, based on a cell-size-

dependent CFL, not with physical temporal accuracy. Properly applied grid sequencing would suffer

27

thisperiodof settlingofshocklocationonthecoarsestgridonly.

Number of Superl_onlc Points (16 Pmcesr, om) Medium Mesh

1000

m

o

!°
200

0 i i
0 20 4O

i i i D

T.'ne(uc}

1oooo

70(X

i°5OO(

I-
200D

,(XX_

Number ofS_plrlonlc Poklt=l(le Prcc44_orl) Flr_o_4Nlh

2OO 4OO 0OO IO0 tOO0

FIG. 6.9. Illustration of the evolution of the shock structure as reflected in the number of gridpoints contained in the
supersonic "bubble" on the upper surface of the airfoil, as a function of pseudo-timestep number, for the medium and

fine grids.

6.6. Scalability. There are many aspects to parallel scalability in a nonlinear PDE problem. We

may usefully distinguish between the numerical scalability of the algorithm (reflecting how the number

of iterations depends upon the partitioning, which makes the "best preconditioner" at each granularity

algebraically different) and the implementation scalability (reflecting how well a given "market basket"

of operations within a single iteration at some level executes at different granularities). We also report

fixed-problem-size scalability and fixed-memory-per-node or "Gustafson" scalability.

In Table 6.2 we present computation rates on an IBM SP2 for the matrix-vector product and an

entire linear solve using an explicitly stored Jacobian with implicit boundary conditions averaged over

a fixed number of Newton corrections of a particular pseudo-timestep. The linear Newton systems are

solved using restarted GMRES with a Krylov subspace of maximum dimension 30 and block Jacobi

preconditioning, where each processor has one block that is solved with ILU(0). The speedup over

two processors (the smallest number on which the entire problem fits, when both the explicit Jacobian

and its preconditioner must be stored) is given in parentheses in the tables. To put in perspective

the average single-node performance of 73.5 Mflop/s (parallel overheads included) for the block-sparse

linear solution of the 2-processor case, we note that the peak performance of one processor of the quad-

issue IBM SP2 is 266 Mflop/s, the dense LINPACK-100 benchmark produces 130 Mflop/s, and a sparse

matrix-vector product that uses thc standard compressed sparse row format (CSR) attains 27 Mflop/s.

We next present in Table 6.3 similar runs for the same problem on the fine mesh, which produces a

system that is roughly eight times as large as the previous one. For this problem of 1,121,320 unknowns,

the computation rate on sixteen processors for the matrix-vector product was 1.28 Gflop/s, while the

complete linear solve achieves 1.01 Gflop/s. On sixty-four processors the matrix-vector product runs at

4.22 Gflop/s, while thc complete linear solve achieves 3.74 Gflop/s. The data presented here is based

on flop counters embedded in the PETSc library routines and pertains to the solvers only. The function

evaluation and Jacobian evaluation application routines are not yet instrumented for floating-point

operation counting; therefore, self-contained linear solutions (with explicitly stored matrix operations,

28

TABLE 6.2

Performance on medium grid problem (computation rate in Mflop/s).

Number of Matrix-Vector Products Linear Solves

Processors Mfiop/s Speedup Mflop/s Speedup

2

4

8

16

32

64

179

337 (1.9)

620 (3.5)

1137 (6.4)

2038 (11.4)
3003 (16.8)

147

286 (2.0)

540 (3.7)

994 (6.8)

1785 (12.1)

2546 (17.3)

TABLE 6.3

Performance on fine grid problem (computation rate in Mflop/s).

Number of

Processors

16

32

64

Matrix-Vector Products

Mflop/s Speedup

1281

2483 (1.9)

4217 (3.3)

Linear Solves

Mflop/s Speedup

1011

2154 (2.1)

3744 (3.7)

not matrix-free approximations) were employed for these computational rate tests. Scalability analysis

in terms of time for the matrix-free variants is presented in Fig. 6.10 and Table 6.6.

Table 6.4 presents timing data for a single NKS iteration, including evaluation of the right-hand-side

vector as well as the linear solve, on the SP2 for 8 and 64 processor cases. We partition the 8-processor

case as 8 x 1 x 1 for the medium mesh and the 64-processor case as 16 x 2 x 2 for the fine mesh. These

particular cases have identical local mesh configurations, so that the problems require the same amount

of memory per processor and therefore have similar caching profiles (which controls for one of the main

effects that renders parallel performance studies difficult).

TABLE 6.4

Time (s) for one nonlinear iteration on an SP_.

Solution Medium Mesh Fine Mesh Percent

Technique 8 Procs (8xlx1) 64 Procs (16x2x2) Difference

Matrix-explicit .39 .46 15

Matrix-free 1.20 1.60 25

It is encouraging that the parallel matrix-free version of the code also has good parallel efficiency

in the Gustafson (memory-constrained) sense. For example, given two versions of the same problem,

one eight times larger than the other (a factor of two mesh refinement in each of three dimensions), and

given eight times as many processors to run the larger case, the two problems have per-iteration costs

within 5 15% of being identical for the matrix-explicit case, and within 12-25% for the matrix-free

29

case. The slightly lower efficiency for the matrix-free case arises because of the dominance of time for

function evaluations for this method.

Despite the slightly poorer scalability of the matrix-free method in the memory-constrained sensc,

the faster convergence of the matrix-free method relative to thc matrix-explicit method becomes in-

creasingly important as problem size increases. Table 6.5 presents the time for total nonlinear solution

using both matrix-explicit and matrix-free approaches for the coarse, medium, and fine meshes on 1, 8,

and 64, processors, respectively. We see that in each case thc matrix-free method performs more than

twice as fast as its matrix-explicit counterpart for a given problem size and processor configuration.

TABLE 6.5

Time (s) for total nonlinear solution on an SP_.

Processor Matrix Matrix Ratio

Grid Configuation Free Explicit (ME/MF)

Coarse

Medium

Fine

1

s (8× 1 x 1)

_4 (16× 2 × 2)

64.4

217.5

1019.3

142.6

499.2

2353.5

2.2

2.3

2.3

The plots in Fig. 6.10 show the scaling of the complete nonlinear simulation for the fine mesh on

16, 32, and 64 processors of an IBM SP with 120 MHz P2SC nodes with two 128 MB memory cards

each and a TB3 switch; analogous performance trends are seen also on the SP2. The data indicate a

modest decrease in nonlinear convergence rate as the number of processors grows; overall solution times

scale reasonably well.

C

¢r

15

-J -10

-12

-14

Nonlinear Iterations for Convergence (Fine Mesh)

2

- - - 32 Processors (j
64 Processo¢_

-12

Computation Times (Fine Mesh)

" [1...... 16 Processors
- - - 32 Processors

i*', 64 Processors

x

',.

t

50 100 150 200 250 -140 200 400 600 800 1000 1200 1400 lr:_O0 1800

Iteration Number Time (Sec)

Fro. 6.10. Scalability of nonlinear solver (fine mesh).

Finally, Table 6.6 compares the scalability on two contemporary high-performance parallel comput-

ers, the IBM SP2 and the Cray T3E. Timings are given for a single matrix-frec NKS iteration on the

fine mesh, including evaluation of the right-hand-side vector as well as the linear solve. Wc consider 16,

32, and 64-processor configurations and present speedup over the 16-processor case.

3o

I |1

TABLE 6.6

Scalability on the SP2, T3E: Timings for one nonlinear iteration on fine mesh.

Machine Number of Processors Time (s) Speedup over 16 Procs.

16 4.39 -

IBM SP2 32 2.46 1.8

64 1.60 2.7

16 5.15 -

Cray T3E 32 2.71 1.9

64 1.71 3.0

7. Conclusion. We have shown that the pseudo-transient matrix-free Newton-Krylov-Schwarz

(_NKS) mcthodology is robust and reasonably efficient for the parallel solution of large-scale CFD

problems, as demonstrated here for the three-dimensional compressible Euler equations. For a given

problem class, the various parameters that affect algorithmic performance can be systematically studied

and tuned. We have also shown how any one of several missing or mistuned functionalities can cause

convergence to slow or to hang at a level far from the best attainable. An integrated approach to

investigating innovative numerical methods and developing software is crucial to designing efficient,

reusable tools.

In our experience, conversion of a legacy code to the matrix-free NKS framework is a "filtering"

process. During the conversion to a Newton method, initially unrecognized explicit updates may be

discovered and unrecognized nondifferentiability or destabilizing sensitivity of local gradient information

about a fimction may be stumbled upon.

Additional work in progress includes the following:

• Investigation of techniques for evaluating relative function noise. As indicated in Section 4.2,

the robustness of matrix-free methods is potentially sensitive to the finite differencing parameter

for the Frgchet derivative. Its selection should be automatically adaptive.

• Incorporation of multilevel methods. Coarse-to-fine grid sequencing is a continuation tool as

powerful as pseudo-transient continuation. Linear multilevel methods that revisit the coarse

levels are also arithmetically optimal solvers for the Newton correction equations. Although

such methods may be very difficult for nonexperts to tune in anisotropic, nonmonotone-inverse

problems, they can be used effectively as preconditioners, as in [48]. Nonlinear multilevel

methods can also be directly accelerated by nonlinear Krylov methods, as in [60].

• Problem-adaptive domain partitioning. The deterioration of convergence rate of Schwarz meth-

ods with increasing subdomain granularity can be minimized when the cuts introduced to

create the partitions are along edges in the Jacobian matrix with minimal coefficient weight

(in some norm to be made more precise with further research). Obviously, load balance and

communication-to-computation ratio criteria may conflict with coefficient weight criteria in

partitioning, but there is often significant latitude (particularly in unstructured problems) in

choosing partitions, which could be exploited by such problem-specific knowledge.

• Nonlinear Schwarz methods. The global Newton method advocated in this paper is an asymp-

totically attractive implicit strategy, but many important problems have the property of being

strongly nonlinear in limited subregions and weakly nonlinear (or evcn linear) elsewhere. When

31

such problems are solved with global Newton methods, work is often wasted on the well-behaved

regions while the solution slowly evolves in the strongly nonlinear regions (see, e.g., [13]). Non-

linear Schwarz methods, including asynchronous varieties, can adapt the work to the degrec of

nonlinearity in the way that adaptive mesh refinement methods can adapt the work to solution

activity. We expect that NKS will fit into an overall solution strategy as a closing strategy, after

nonlinear Schwarz (employing NK as a subdomain solver) is adaptively applied as an opening

strategy.

Acknowledgments.. The authors owe a large debt of gratitude to Professor Dave Whitfield of the

Engineering Research Center at Mississippi Statc University for providing JULIANNE as the legacy code that

drovc several aspects of this work. Satish Balay and Barry Smith of Argonne National Laboratory co-developed

the PETSc software employed in this paper, together with Cropp and McInnes, under the Mathematical,

Information, and Computational Sciences Division subprogram of the Office of Computational and Technology

Research, U.S. Department of Energy, under Contract W-31-109-Eng-38. Dr. George K. Lea of the National

Science Foundation supported the work of the Keyes and McInnes at Old Dominion University under ECS-

9527169. Dr. James L. Thomas of the NASA Langley Research Center supported the work of Satish Balay at

Old Dominion University under NAG-l-1692, and all four authors have collaborated while in residence at ICASE,

where early results of this paper werc employed in a "Bring Your Own Code" Workshop on the Parallelization

of PDE-based Codes in December 1996. Barry Smith, Kees Oosterlee, and Alex Povitsky provided valuablc

feedback on early versions.

REFERENCES

[1] K. AJMANI, W.-F. NG, AND M.-S. LIOU, Preconditioned conjugate gradient methods for the

Navier-Stokes equations, J. Computational Physics, 110 (1994), pp. 68-81.

[2] C. D. V. ALBADA, B. VAN LEER, AND W. W. ROBERTS, JR., A comparative study of computa-

tional methods in cosmic gas dynamics, Astronomics and Astrophysics, 108 (1982), pp. 76 84.

[3] S. BALAY, W. D. GROPP, L. C. MCINNES, AND B. F. SMITH, EJ_icient management o/par-

aUelism in object oriented numerical software libraries, in Modern Software Tools in Scientific

Computing, E. Arge, A. M. Bruaset, and H. P. Langtangen, eds., Birkhauser Press, 1997,

pp. 163 202.

[4] --, PETSc 2.0 users manual, Tech. Report ANL-95/ll - Revision 2.0.22, Argonne National

Laboratory, April 1998.

[5] --., PETSc home page. http://www.mcs.anl.gov/petsc, May 1998.

[6] T. J. BARTH AND S. W. LINTON, An unstructured mesh Newton solver for fluid flow and its

parallel implementation, Tech. Report 95-0221, AIAA, 1995.

[7] P. BJORSTAD, R. ESPEDAL, AND D. E. KEYES, eds., Proceedings of the Ninth International

Conference on Domain Decomposition Methods, Wiley, 1998 (to appear).

[8] P. N. BROWN AND A. C. HINDMARSH, Matrix-free methods for stiff systems of ODE's, SIAM J.

Numerical Analysis, 23 (1986), pp. 610 638.

[9] P. N. BROWN AND Y. SAAD, Hybrid Krylov methods for nonlinear systems of equations, SIAM

J. Scientific and Statistical Computing, 11 (1990), pp. 450-481.

32

I | I

[10] X.-C. CAI, Some domain decomposition algorithms for nonselfadjoint elliptic and parabolic partial

differential equations (Ph.D. thesis), Tech. Report 461, Courant Institute, September 1989.

[11] X.-C. CAI, C. FARHAT, AND M. SARKIS, Schwarz methods for the unsteady compressible Navier-

Stokes equations on unstructured meshes, in Proceedings of the Eighth International Conference

on Domain Decomposition Methods, Wiley, 1997, pp. 453 460.

[12] --, A minimum overlap restricted additive Schwarz preconditioner and applications in 3d flow

simulations, in Proceedings of the Tenth International Conference on Domain Decomposition

Methods, AMS, 1998, pp. 238 244.

[13] X.-C. CAI, W. D. GROPP, D. E. KEYES, R. G. MELVIN, AND D. P. YOUNG, Parallel Newton-

Krylov-Schwarz algorithms for the transonic full potential equation, SIAM J. Scientific Com-

puting, 19 (1998), pp. 246 265.

[14] X.-C. CAI, W. D. GROPP, D. E. KEYES, AND M. D. TIDRIRI, Newton-Krylov-Schwarz methods

in CFD, in Proceedings of the International Workshop on Numerical Methods for the Navier-

Stokes Equations, Vieweg, 1995, pp. 17 30.

[15] X.-C. CAI, D. E. KEYES, AND V. VENKATAKRISHNAN, Newton-Krylov-Schwarz: An implicit

solver for CFD, in Proceedings of the Eighth International Conference on Domain Decomposi-

tion Methods, Wiley, 1997, pp. 387 400.

[16] X.-C. CAI AND M. SARKIS, A restricted additive Schwarz preconditioner for general sparse linear

systems, Tech. Report CU-CS 843-97, Computer Science Department, University of Colorado-

Boulder, 1997. (accepted by SIAM J. of Scientific Computing).

[17] T. F. CHAN AND K. R. JACKSON, Nonlinearly preconditioner Krylov subspace methods for discrete

Newton algorithms, SIAM 3. Scientific and Statistical Computing, 5 (1984), pp. 535-542.

[18] D. E. CULLER, J. P. SINGH, AND A. GUPTA, Parallel Computer Architecture, Morgan-Kaufman,

1998.

[19] V. D. DECYK, S. R. KARMESIN, A. DE BOER, AND P. C. KUEWER, Optimization of particle-

in-cell codes on RISC processors, Tech. Report CRPC-95-6, CRPC, Oct. 1995.

[20] R. DEMBO, S. EISENSTAT, AND W. STEIHAUG, Inexact Newton methods, SIAM J. Numerical

Analysis, 19 (1982), pp. 400 408.

[21] J. E. DENNIS AND R. t3. SCHNABEL, Numerical Methods for Unconstrained Optimization and

Nonlinear Equations, Prentice-Hall, 1983.

[22] J. E. DENNIS AND V. TORCZON, Direct search methods on parallel machines, SIAM J. Optimiza-

tion, 1 (1991), pp. 448 474.

[23] M. DRYJA AND 0. B. WIDLUND, An additive variant of the Schwarz alternating method for the

case of many subregions, Tech. Report 339, Courant Institute, NYU, 1987.

[24] S. C. EISENSTAT AND H. F. WALKER, Choosing the forcing terms in an inexact Newton method,

SIAM J. Scientific Computing, 17 (1996), pp. 16-32.

[25] A. ERN, V. GIOVANGIGLI, D. E. KEYES, AND M. D. SMOOKE, Towards polyalgorithmic linear

system solvers for nonlinear elliptic systems, SIAM J. Scientific Computing, 15 (1994), pp. 681

703.

[26] C. FARHAT, M. LESOINNE, AND N. MAMAN, Mixed explicit/implicit time integration of coupled

aeroelastic problems: Three-field formulation, geometric conservation and distributed solution,

International J. for Numerical Methods in Fluids, 21 (1995), pp. 807 835.

33

[27]R. W. FREUND,A transpose-free quasi-minimal residual algorithm for non-Hermitian linear sys-

tems, SIAM J. Scientific and Statistical Computing, 14 (1993), pp. 470 482.

[28] R. W. FREUND, G. H. GOLUB, AND N. M. NACHTIGAL, Iterative solution of linear systems,

Acta Numerica, (1992), pp. 57 100.

[29] C. W. GEAR AND V. SAAD, Iterative solution of linear equations in ODE codes, SIAM J. Scientific

and Statistical Computing, 4 (1983), pp. 583_01.

[30] W. D. GROPP AND D. E. KEYES, Complexity of parallel implementation of domain decompo-

sition techniques for elliptic partial differential equations, SIAM J. Scientific and Statistical

Computing, 9 (1988), pp. 312 326.

[31] --, Domain decomposition on parallel computers, Impact of Computing in Science and Engi-

neering, 1 (1989), pp. 421 439.

[32] W. D. GROPP, D. E. KEYES, AND J. S. MOUNTS, Implicit domain decomposition algorithms

for steady, compressible aerodynamics, in Sixth International Symposium on Domain Decom-

position Methods, A. Quarteroni, J. Periaux, Y. A. Kuznetsov, and O. B. Widlund, eds.,

Providence, 1994, AMS, pp. 203-213.

HIRSCH, Numerical Computation of Internal and External Flows: Volume 2: Computational

Methods for Inviscid and Viscous Flows, John Wiley and Sons, 1988.

B. JENSSEN AND P. A. WEINERFELT, Coarse grid correction scheme for implicit multiblock

Euler calculations, AIAA J., 33 (1995), pp. 1816 1821.

--, Parallel implicit time-accurate Navier-Stokes computations using coarse grid correction,

AIAA J., 36 (1995), pp. 946 951.

JIANG AND P. A. FORSYTH, Robust linear and nonlinear strategies for solution of the transonic

Euler equations, Computers and Fluids, 24 (1995), pp. 753 770.

JOHANN, T. J. R. HUGHES, AND F. SHAKIB, A globally convergent matrix-free algorithm

for implicit time-marching schemes arising in finite element analysis in fluids, Computational

Methods in Applied Mechanics and Engineering, 87 (1991), pp. 281-304.

E. KAUSHIK, D. E. KEYES, AND B. F. SMITH, On the interaction of architecture and algo-

rithm in the domain-based parallelization of an unstructured grid incompressible flow code, in

Proceedings of the Tenth International Conference on Domain Decomposition Methods, AMS,

1998, pp. 311 319.

T. KELLEY, Iterative Methods for Linear and Nonlinear Equations, SIAM, 1995.

T. KELLEY AND D. E. KEYES, Convergence analysis of pseudo-transient continuation, SIAM

J. Numerical Analysis, 35 (1998), pp. 508 523.

E. KEYES, Domain decomposition methods for the parallel computation of reacting flows, Com-

puter Physics Communications, 53 (1989), pp. 181 -200.

--, Aerodynamic applications of Newton-Krylov-Schwarz solvers, in Proceedings of the 14th

International Conference on Numerical Methods in Fluid Dynamics, Springer, 1995, pp. 1 20.

E. KEYES AND W. D. GROPP, Domain decomposition techniques for nonsymmetric systems

of elliptic boundary value problems: Examples from CFD, in Second International Symposium

on Domain Decomposition Methods, T. F. Chan, R. Glowinski, J. P_riaux, and O. Widlund,

cds., Philadelphia, 1989, SIAM, pp. 321-339.

E. KEYES, D. K. KAUSHIK, AND B. F. SMITH, Prospects for CFD on petaflops systems, in

[33] C.

[34] C.

[35]

[36] H.

[37] Z.

[38] D.

[39] C.
[40] C.

[41] D.

[42]

[43] D.

[44] D.

34

CFDReview1997,Wiley,1998(toappear).
[45]D. E. KEYESANDM. D. SMOOKE, A parallelized elliptic solver for reacting flows, in Parallel

Computations and Their Impact on Mechanics, A. K. Noor, ed., ASME, 1987, pp. 375-402.

[46] D. A. KNOLL, P. R. McHUGH, AND D. E. KEYES, Newton-Krylov methods for low Mach number

compressible combustion, AIAA J., 34 (1996), pp. 961 967.

[47] D. A. KNOLL AND W. J. RIDER, A multilevel Newton-Krylov method for nonsymmetric, nonlinear

boundary value problems, tech. report, Los Alamos National Laboratory, 1997.

[48] --, A multilevel preconditioned Newton-Krylov method, tech. report, Los Alamos National Lab-

oratory, 1997.

[49] D. A. KNOLL, W. J. RIDER, AND G. L. OLSON, Newton-KryIov methods applied to nonequilibrium

radiation diffusion, tech. report, Los Alamos National Laboratory, 1998.

[50] J. MANDEL, C. FARHAT, AND X.-C. CAI, eds., Proceedings of the Tenth International Conference

on Domain Decomposition Methods, AMS, 1998.

[51] D. J. MAVRIPLIS, On convergence acceleration techniques for unstructured meshes, Tech. Report

98-2966, AIAA, 1998.

[52] P. R. McHUGH AND D. A. KNOLL, Inexact Newton's method solutions to the incompressible

Navier-Stokes and energy equations using standard and matrix-free implementations, in Pro-

ceedings of the AIAA Eleventh Annual Computational Fluid Dynamics Conference, 1993.

[53] P. R. MCHUGH, D. A. KNOLL, V. A. MOUSSEAU, AND G. A. HANSEN, An investigation of

Newton-Krylov solution techniques for low Mach number compressible flow, in Proceedings of

the ASME Fluids Engineering Division Summer Meeting, 1995.

[54] L. C. MCINNES AND J. J. MORI_. Unpublished information, Mathematics and Computer Science

Division, Argonne National Laboratory, 1998.

[55] MPI FORUM, MPI: A message-passing interface standard, International J. for Supercomputing

Applications, 8 (1994). http://www.mpi-forum.org.

[56] W. MULDER AND B. VAN LEER, Experiments with implicit upwind methods for the Euler equations,

J. Computational Physics, 59 (1985), pp. 232-246.

[57] N. M. NACHTIGAL, S. C. REDDY, AND L. N. TREFETHEN, How fast are nonsymmetric matrix

iterations?, SIAM J. Matrix Analysis and Applications, 13 (1992), pp. 778 795.

[58] J. C. NEWTON, W. K. ANDERSON, AND D. L. WHITFIELD, Multidisciplinary sensitivity deriva-

tives using complex variables, Tech. Report 98-08, Mississippi State University Engineering

Research Center, July 1998.

[59] E. J. NIELSEN, R. W. WALTERS, W. K. ANDERSON, AND D. E. KEYES, Application of Newton-

Krylov methodology to a three-dimensional unstructured Euler code, Tech. Report 95-1733,

AIAA, 1995.

[60] C. W. OOSTERLEE AND W. WASHIO, On Krylov subspace acceleration of nonlinear multigrid

schemes for rotating flow problems, tech. report, Institute for Algorithms and Scientific Com-

puting, GMD, 1998. Submitted to SIAM J. of Scientific Computing.

[61] P. D. ORKWIS, Comparison of Newton's and quasi-Newton's method solvers for the Navier-Stokes

equations, AIAA J., 31 (1993), pp. 832 836.

[62] M. PERNICE, L. ZHOU, AND H. F. WALKER, Parallel solution of nonlinear partial differential

equations using a globalized inexact Newton-Krylov-Schwarz method, Tech. Report 48, Univer-

35

sity ofUtahCenterforHighPerformanceComputing,1997.
[63]N. QIN,D. K. LUDLOW, AND S. T. SHAW, A matrix-free preconditioned Newton/GMRES method

for Navier-Stokes equations. Submitted to J. of Computational Physics, 1997.

[64] P. L. ROE, Approximate Riemann solvers, parameter vector, and diference schemes, J. Compu-

tational Physics, 43 (1981), pp. 357 372.

[65] Y. SAAD AND M. H. SCHULTZ, GMRES: A generalized minimal residual algorithm for solving

nonsymmetric linear systems, SIAM J. Scientific and Statistical Computing, 7 (1986), pp. 856

869.

[66] V. SCHMITT AND 1_. CHARPIN, Pressure distributions on the ONERA M6 wing at transonic Mach

numbers, Tech. Report AR-138, AGARD, May 1979.

[67] R. SCHREIBER AND H. B. KELLER, Driven cavity flows by el_ieient numerical techniques, J.

Computational Physics, 49 (1983), pp. 310 333.

[68] F. SHAKIB, T. J. R. HUGHES, AND Z. JOHAN, Element-by-element algorithms for nonsymmetric

matrix problems arising in fluids, in Superlarge Problems in Computational Mechanics, Plenum,

1987, pp. 1 34.

[69] B. F. SMITH, P. BJORSTAD, AND W. D. GROPP, Domain Decomposition: Parallel Multilevel

Methods for Elliptic Partial ,Differential Equations, Cambridge Univcrsity Press, 1996.

[70] M. D. SMOOKE, An error estimate for the modified Newton method with applications to the solution

of nonlinear two-point boundary value problems, J. Optimization Theory and Applications, 39

(1983), pp. 489 511.

[71] M. D. SMOOKE AND R. M. MATTHEIJ, On the solution of nonlinear two-point boundary value

problems on successively refined grids, Applied Numerical Mathematics, 1 (1985), pp. 463 487.

[72] P. SONNEVELD, CGS, a fast Lanezos-type solver for nonsymmetric linear systems, SIAM J. Sci-

entific and Statistical Computing, 10 (1989), pp. 36 52.

[73] M. D. TIDRIRI, Krylov methods for compressible flows, Tech. Report 95-48, ICASE, June 1995.

[74] --, Schwarz-based algorithms for compressible flows, Tech. Report 96-4, ICASE, Jan. 1996.

[75] E. TURKEL, Review of preconditioning methods for fluid dynamics, Applied Numerical Mathemat-

ics, 12 (1993), pp. 27 46.

[76] H. VAN DER VORST, Bi-CGSTAB: A fast and smoothly converging varient of Bi-CG for the solution

of nonsymmetric linear systems, SIAM J. Scientific and Statistical Computing, 13 (1992),

pp. 631 644.

[77] S. P. VANKA, Block-implicit calculation of steady turbulent recirculating flows, International J. of

Heat and Mass Transfer, 28 (1985), pp. 2093-2103.

[78] v.

[79] v.

[80] v.

[81]v.

[82] c.

VENKATAKRISHNAN, Newton solution of inviscid and viscous problems, AIAA J., 27 (1989),

pp. 885 891.

VENKATAKRISHNAN, Parallel implicit unstructured grid Euler solvers, AIAA J., 32 (1994),

pp. 1985- 1991.

VENKATAKRISHNAN, Convergence to steady state solutions of the Euler equations on unstruc-

tured grids with limiters, J. Computational Physics, 118 (1995), pp. 120-130.

VENKATAKRISHNAN AND D. J. MAVRIPLIS, Implicit solvers for unstructured meshes, J. Com-

putational Physics, 105 (1993), pp. 83-91.

WANG AND D. g. TAFTI, Performance enhancement on microprocessors with hierarchical

36

REPORT DOCUMENTATION PAGE Fo_m Approved
OMB No. 0704-0188

Pubilc reporting burden for this colfectlon of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources,

gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of th s

collection of inform.atlon, incTucl;ng suggestions for reducing this burden, to Washing'con Headquarters Services, Directorate for Information Operations and Reports, 1215 JefTerson

Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of" Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.

1. AGENCY USE ONLY(Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

August 1998 Contractor Report

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Globalized Newton-Krylov-Schwarz algorithms and software

for parallel implicit CFD

6. AUTHOR(S)

W.D. Gropp, D.E. Keyes, L.C. McInnes, and M.D. Tidriri

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

Institute for Computer Applications in Science and Engineering

Mall Stop 403, NASA Langley Research Center

Hampton, VA 23681-2199

'9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Langley Research Center

Hampton, VA 23681-2199

C NAS1-19480

C NAS1-97046

WU 505-90-52-01

8. PERFORMING ORGANIZATION

REPORT NUMBER

ICASE Report No. 98-24

10. SPONSORING/MONITORING
AGENCY REPORT NUMBER

NASA/CR-1998-208435

ICASE Report No. 98-24

11. SUPPLEMENTARY NOTES

Langley Technical Monitor: Dennis M. Bushnell

Final Report

To be submitted to the International Journal of Supercomputer Applications and High Performance Computing

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified Unlimited

Subject Category 60, 61

Distribution: Nonstandard

Availability: NASA-CASI (301)621-0390

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Implicit solution methods are important in applications modeled by PDEs with disparate temporal and spatial

scales. Because such applications require high resolution with reasonable turnaround, "routine" parallelization is

essential. The pseudo-transient matrix-free Newton-Krylov-Schwarz (Psi-NKS) algorithmic framework is presented

as an answer. We show that, for the classical problem of three-dimensional transonic Euler flow about an M6

wing, Psi-NKS can simultaneously deliver: globalized, asymptotically rapid convergence through adaptive pseudo-

transient continuation and Newton's method; reasonable parallelizability for an implicit method through deferred

synchronization and favorable communication-to-computation scaling in the Krylov linear solver; and high per-

processor performance through attention to distributed memory and cache locality, especially through the Schwarz

preconditioner. Two discouraging features of Psi-NKS methods are their sensitivity to the coding of the underlying

PDE discretization and the large number of parameters that must be selected to govern convergence. We therefore

distill several recommendations from our experience and from our reading of the literature on various algorithmic

components of Psi-NKS, and we describe a freely available, MPI-based portable parallel software implementation of

the solver employed here.

]4. SUBJECT TERMS

Newton-Krylov-Schwarz algorithms; parallel CFD; implicit methods

17. SECURITY CLASSIFICATION

OF REPORT

Unclassified

_ISN 7540-01-280-5500

18. SECURITY CLASSIFICATIOI_

OF THIS PAGE

Unclassified

• rl•

15. NUMBER OF PAGES

42

16. PRICE COD'E

AO3
19. SECURITY CLASSIFICATION 20. LIMITATION

OF ABSTRACT OF ABSTRACT

Standard Form 298(Rev. 2-89)
Prescribedby ANSI Std. Z39-18
298-102

[83] D.

[84] D.

[85] --

[86] L.

[87] D.

memory systems for solving large sparse linear systems, International J. for Supercomputer

Applications and High Performance Computing, 12 (1998 (to appear)).

L. WHITFIELD AND J. M. JANUS, Three-dimensional unsteady Euler equations using flux

vector splitting, in Proceedings of the AIAA 17th Fluid Dynamics, Plasma Dynamics, and

Lasers Conference, 1984.

L. WHITFIELD AND L. K. TAYLOR, Discretized Newton-relaxation solution of high resolution

flux-difference split schemes, in Proceedings of the AIAA Tenth Annual Computational Fluid

Dynamics Conference, 1991, pp. 134 145.

, Variants of a two-level method for the approximate numerical solution of field simulation

equations, Tech. Report 98-09, Mississippi State University Engineering Research Center, July

1998.

B. WIGTON, N. J. Vu, AND D. P. YOUNG, GMRES acceleration of computational fluid

dynamics codes, Tech. Report 85-1494, AIAA, 1985.

P. YOUNG, R. G. MELVIN, M. B. BIETERMAN, F. W. JOHNSON, S. S. SAMANT, AND

J. E. BUSSOLETTI, A locally regined rectangular grid finite element method: Applications to

computational fluid dynamics and computational physics, J. Computational Physics, 92 (1991),

pp. 1 66.

37

